

PREPARED BY:

SUZANNE MARINELLO P.E. JACOB RAY GRADWOHL YUKI KLEIN COMMERCIAL BUILDING ENERGY AUDIT PROGRAM

ENERGY AUDIT FOR:
Retail Store

PROJECT NO: ORC002

DATE: August 23, 2022

Contents

ABBREVIATIONS	
DISCLAIMER	
PREFACE	
1 KEY CONTACT INFORMATION	
2 ENERGY EFFICIENCY MEASURE (EEM) SUMMARY	
3 BUILDING DESCRIPTION	5
4 BEST PRACTICES	6
5 ENERGY COST ANALYSIS	
6 MAJOR ENERGY CONSUMING EQUIPMENT	12
7 DETAILED ENERGY EFFICIENCY MEASURES	16
2 APPENDICES	21

Abbreviations

AFUE	Annual Fuel Utilization Efficiency	IAC	Industrial Assessment Center
AHU	Air Handling Unit	kBtu	1,000 Btus
BTU	British Thermal Unit	kW	Kilowatt
CFM	Cubic Feet (per) Minute	kWh	Kilowatt-hours
CMU	Concrete Masonry Unit	lbs	Pounds
CV	Constant Volume	LPD	Lighting Power Density
DAT	Discharge Air Temperature	MBH	kBtu/hr (1,000 BTU/hr)
DDC	Direct Digital Control(s)	MAT	Mixed Air Temperature
DegF	Degrees Fahrenheit	OAT	Outside Air Temperature
DOE	Department of Energy	RAT	Return Air Temperature
DHW	Domestic Hot Water	RF	Return Fan
dP	Discharge Pressure	SAT	Supply Air Temperature
dΤ	Delta T (Temperature difference)	sf	Square Feet
DX	Direct Expansion	SF	Supply Fan
EEM	Energy Efficiency Measure	SOO	Sequence of Operations
EFLH	Estimated Full Load Hours	SP	Static Pressure
ETO	Energy Trust of Oregon	TMY3	Typical Meteorological Year
EUI	Energy Use Index	TU	Terminal Unit
HC	Heating Coil	VAV	Variable Air Volume
HP	Horsepower	VFD	Variable Frequency Drive
hr	Hour	W	Watts
HVAC	Heating Ventilating & Air Conditioning	Yr	Year
HW	Heating Water		
HWP	Heating Water Pump		
	O		

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The intent of this energy analysis is to estimate energy savings associated with the recommended energy efficiency upgrades. This report is not intended to serve as a detailed engineering design document. Any description of proposed improvements that may be diagrammatic in nature are for the purpose of documenting the basis of cost and savings estimates for potential energy efficiency measures only. Detailed design efforts may be required by the participant to implement measures recommended as part of this energy analysis. While the recommendations in this study have been reviewed for technical accuracy and are believed to be reasonably accurate, all findings listed are estimates only. Actual savings and incentives may vary based on final installed measures and costs, actual operating hours, energy rates and usage.

Preface

The Commercial Building Energy Audit (CBEA) program is funded by the DOE and structured within the framework of its predecessor and parent program, the Industrial Assessment Center (IAC). The purpose of the CBEA is to provide customers with free energy assessments of commercial buildings, thereby increasing energy efficiency while simultaneously expanding the workforce of building efficiency professionals through the application of student participation from partnered colleges and universities. The scope of such audits is limited in nature, for the express purpose of identifying no-cost and low-cost energy savings opportunities, and a general view of potential capital improvements. This is accomplished by means of utility usage and billing evaluation, along with observation and analysis of energy using systems. The findings and recommendations within this report represent the conditions observed at the time of this site survey. Conditions and equipment usage are subject to change, and therefore the conclusions expressed within this report may not be evident in the future. The CBEA audit team has endeavored to meet what it believes is the applicable standard of care ordinarily exercised by others in conducting this energy audit. No other warranty, express or implied, is made regarding the information contained in this report.

1 Key Contact Information

Participant (Customer) C	Contact					
Contact Name						
Title						
Phone						
Email						
CBEA Contact						
Contact Name	Suzanne Marinello P.E.					
Title	Lead Energy Analyst Lead Instructor					
Phone	541-207-8205					
Email	marinellos@lanecc.edu					
CBEA Contact						
Contact Name	Jacob Ray Gradwohl					
Title	Lead Student Intern					
Email	gradwoja@oregonstate.edu					
CBEA Contact						
Contact Name	Yuki Klein					
Title	Student Intern					
Email	kleiny@oregonstate.edu					

2 Energy Efficiency Measure (EEM) Summary

These energy efficiency measures (EEM)s are suggested for the facility. Cost savings are based on 2021 utility rates for electricity and natural gas. Actual rates and cost savings will differ. Non-energy cost benefits are related to cost savings due to as-avoided maintenance. Simple payback is estimated using current utility rates and estimated project costs, which may vary over time.

		Д	nnual Energy a	N	Measure Cost and Simple Payback				
Measure Number	Measure Description	Electricity Savings		Gas Fuel Savings	Total Cost Savings		Measure Cost		Simple Payback
		kWh	kW	Therms					Year
EEM 1	Lighting Upgrade	185916	32	-	\$	5,503	\$	26,686	5
EEM 2	Control Vestibule Elec Heaters	13440		-	\$	390	\$	300	1
EEM 3	Demand Control Ventilation	50683		3202	\$	4,723	\$	300	0.1
EEM 4	EEM 4 Provide New Thermostats on Elec Heaters			-	\$	1,705	\$	8,500	5
Totals (Recom	Totals (Recommended Measures)		308846		\$	12,321	\$	35,786	3

3 Building Description

The retail store is located in Portland Oregon.

It encompasses roughly 124,000 sf attached to a mall shopping center. The building was constructed in 2014. The current envelope consists of a flat metal roof covered with thermal insulation, and a dark membrane roofing material. The interior of the building contains a large sales floor space with a 30 ft ceiling, one warehouse space, storage rooms, public restrooms, private offices, employee lounge, bathrooms, and conference room, with a mezzanine level accessed via stairway/elevator and a ladder access to one side of the roof.

The building is open every day, with operating hours for staff from 6AM to 10 PM, and customer access between 9 AM and 9 PM Monday through Saturday, and 10 AM – 7 PM Sundays. The building staff averages approximately 100 employees per day. The annual building energy consumption averages approximately 11275 MMBtu as measured across three years from 2019 and 2021.

The store has an EUI of 91 kBtu/sf per year. According to the Energy Star Benchmarking metric the median EUI for retail is 55.8 kBtu/sf per year.

4 Best Practices

This audit is per ASHRAE Level 1 requirements. The building's energy cost and efficiency were assessed by analyzing 3 years of utility data.

Utility analysis was used to produce reports on the monthly consumption of both electricity and natural gas. The output from these reports was used to benchmark this building against the median EUI for buildings of its size and type in the local vicinity.

The mechanical and lighting schedules were used to generate outlines of energy usage in terms of demand and energy consumption.

A site visit conducted on June 16th, 2022 provided a walk-through survey of the facility including its construction, operation, and maintenance, and major energy consuming equipment. Feedback from the customer related to facility performance and comfort was used to inform the survey and the resulting recommendations within this report.

The data was then used to identify no-cost and low-cost measures for improving energy efficiency. Because calculations at this level are minimal, savings and costs are approximate.

5 Energy Cost Analysis

Table 1: 2021 Utility Data

	2021 Electrical Data											
Month	kWh	kW	/h Charge	Charg	e / kWh	kW		kW Charge	Fees			
Jan	253,200	\$	7,342.28	\$0.	029	556.0	0	\$1,857.26	\$2,292.84			
Feb	198,000	\$	5,743.17	\$0.	.029	452.0	0	\$1,738.61	\$1,916.75			
Mar	190,200	\$	5,507.13	\$0.	029	394.0	0	\$1,616.57	\$1,854.73			
Apr	195,600	\$	5,663.28	\$0.	.029	382.00		\$1,565.72	\$1,887.61			
May	225,000	\$	6,512.40		.029	400.0		\$1,630.13	\$1,842.10			
Jun	252,000	\$	7,358.58	\$0.	029	611.0		\$2,016.59	\$2,301.53			
Jul	291,600		8,535.12	\$0.	.029	733.0	0	\$2,184.03	\$2,567.40			
Aug	301,800		8,788.05		.029	733.0		\$2,203.73	\$2,633.21			
Sep	264,600		7,740.91		.029	606.0		\$1,973.21	\$2,382.94			
Oct	227,400		6,621.77		029	535.0		\$1,912.19	\$2,136.16			
Nov	205,800	-	5,983.71		.029	467.0		\$1,766.42	\$1,989.34			
Dec	231,600		6,690.72	\$0.	.029	454.00		\$1,715.57	\$2,154.64			
TOTALS	2,836,800	\$	82,487.12			6,323.00		\$22,180.03	\$25,959.25			
	2021 Natural Gas Data											
Month	Therms		Cos	t Cost / Therm		Other Charges		Total				
Jan	755.9		\$641.	38	\$0.848		\$58.00		\$699.38			
Feb	770.4		\$604.	40	\$0.785		\$16.87		\$621.27			
Mar	541.3		\$434.	74	\$0	0.803		\$44.45	\$479.19			
Apr	318.4		\$249.	36	\$0).783		\$32.31	\$281.67			
May	192.7		\$184.	07	\$0).955		\$28.04	\$212.11			
Jun	53.9		\$43.2	24	\$0).802		\$18.81	\$62.05			
Jul	1.2		\$0.9	6	\$0	0.800		\$16.05	\$17.01			
Aug	1.2		\$0.9	6	\$0	0.800		\$16.05	\$17.01			
Sep	2.4		\$1.9	3	\$0).804		\$16.11	\$18.04			
Oct	15.4		\$12.3	35	\$0).802		\$16.79	\$29.14			
Nov	313.1		\$251.	17	\$0).802		\$42.71	\$293.88			
Dec	597.5		\$603.			1.010	\$55.52		\$659.22			
TOTALS	3,563.4		\$3,028	.26	\$	1.05		\$361.71	\$3,389.97			

Table 2: Historical Energy Use

	Ele	ctrical Use (kV	Vh)			Natura	I Gas Use (The	rms)				
Month	2019	2020	2021	3-year Ave.	2019	2020	2021	3-Year Ave.				
January	298,200	274,200	253,200	275200	659.0	731.2	755.9	715.4				
February	265,800	276,000	198,000	246600	583.9	624.2	770.4	659.5				
March	295,200	260,400	190,200	248600	589.6	496.0	541.3	542.3				
April	285,000	232,200	195,600	237600	329.2	103.9	318.4	250.5				
May	309,600	240,600	225,000	258400	85.3	7.1	192.7	95.0				
June	375,000	242,400	252,000	289800	69.8	1.2	53.9	41.6				
July	349,200	253,200	291,600	298000	19.4	2.4	1.2	7.7				
August	354,000	262200	301,800	306000	1.2	1.2	1.2	1.2				
September	378,000	285,000	264,600	309200	1.2	1.2	2.4	1.6				
October	309,000	226,800	227,400	254400	254.1	14.4	15.4	94.6				
November	291,600	208,200	205,800	235200	354.3	577.3	478.0	469.9				
December	306,600	237,000	231,600	258400	711	718.2	597.5	675.6				
Annual Energy Usage												
Annual Elec Energy Usage (kWh)	3,819,219	3,000,220	2,838,821	3,217,400								
Annual NG Energy Usage (Therms)					2,999	2,547	2,972	2,840				
Annual Elec Energy kBtu	13038814	10242751	9691735	10984204								
Annual NG Energy Usage kBtu	299900	254710	297240	283950								
Total Annual Energy Usage (MMBtu)	13339	10497	9989	11275								
Energy Performace of the Facility												
Conditioned Space Area (sqft)	Conditioned Space Area (sqft)											
	Total Energy Use (MMBtu per year, 3-year ave.)						11,275					
Energy Use Intensity, EUI (kBtu/sqft/ye	ar)			91								
*Median EUI for Facility Type in the US						55.8						

Elec Energy Use in kBtu = Annual kWh x 3414 Btu/kWh / 1000 NG Energy Use in Btu = Therms/100,000 NG Energy Use in kBtu = Btu/1000 ! MMBtu = 1000 kBtu

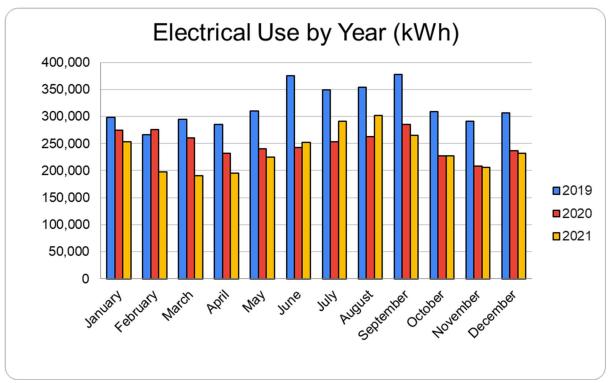


Figure 1: Electrical Use by Year (in kWh)

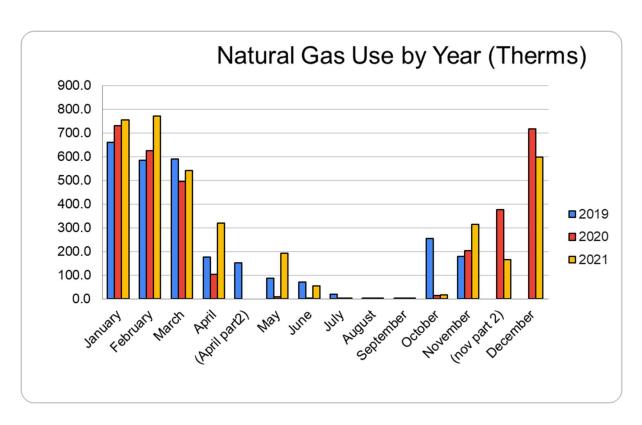


Figure 2: Natural Gas Use by Year (in Therms)

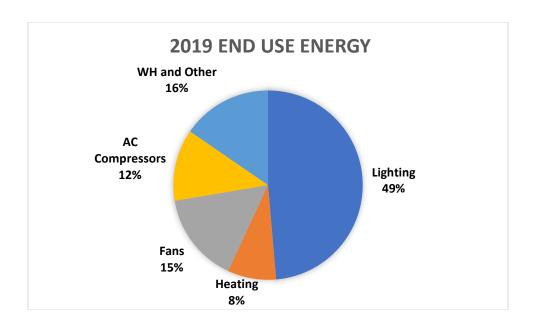


Figure 3: 2019 Pre-Pandemic End Use Summary

6 Major Energy Consuming Equipment

6.1 Mechanical Systems

The retail space, warehouse, mezzanine, and offices are conditioned by gas heat, electric cooling roof mounted packaged units. There are 27 roof units installed during the initial construction. All units are single zone and constant volume, ranging in size from 3 to 25 tons nominal cooling capacities. The equipment schedules indicate that there are economizers and CO2 sensors for each unit, and a VFD for supply fans. The warehouse is heated by gas-fired radiant heat and has infrared heaters above the loading dock doors. Radiant heat is also present in the three vestibules.

Two split-system units provide cooling to the elevator equipment and MIS rooms.

Roof mounted exhaust fans provide exhaust for the archery range, vault, kitchen, restrooms, and electrical room.

The following Tables summarize the major mechanical equipment.

Table 3: Rooftop Unit Schedule

	Rooftop Unit Schedule (Gas Heating / Electric Cooling)											
Tag	Area Served	Manufacturer	Model	Air Flow (CFM)	Min OA (CFM)	Heating Capacity (MBH)	Heating Efficiency	Cooling Capacity (MBH)	Cooling Efficiency (EER)	Econ	Supply Fan HP	SF VFD
RTU-1, 3, 4, 6, 7	Sales Floor	YORK	ZJ-120	4,000	300	144	80%	121.1	12.0	Yes	3	Yes
RTU-2, 5, 8	Sales Floor	YORK	ZJ-150	5,000	300	144	80%	157.4	12.0	Yes	5	Yes
RTU-9	Gun Storage	YORK	ZR-037	1,200	150	49	80%	28.6	12.2	Yes	1.5	No
RTU-10	Gun Library	YORK	ZR-037	1,080	100	49	80%	30.3	12.2	Yes	1.5	No
RTU-11	Kitchen/Seating	YORK	ZJ-102	3,060	300	96	80%	91.7	12.0	Yes	3	No
RTU-12	Conference	YORK	ZJ-037	1,080	100	49	80%	29.0	12.2	Yes	1.5	No
RTU-13	Check-Out	YORK	ZJ-102	3,060	600	144	80%	91.7	12.0	Yes	3	No
RTU-14	Cust. Service	YORK	ZJ-037	1,080	150	49	80%	29.4	12.2	Yes	1.5	No
RTU-15	Warehouse	YORK	ZJ-300	10,000	500	320	80%	282.8	10.5	Yes	15	Yes
RTU-16	Bargain Cave	YORK	ZJ-061	2,000	100	129	80%	56.3	12.2	Yes	2	No
RTU-17, 20, 23	Salesfloor	YORK	ZJ-150	5,000	300	144	80%	157.4	12.0	Yes	5	Yes
RTU-18, 19, 21, 22, 24	Salesfloor	YORK	ZJ-120	4,000	300	144	80%	121.1	12.0	Yes	3	Yes
RTU-25	Mis Room	YORK	ZJ-078	2,340	125	96	80%	70.9	11.2	Yes	2	No
RTU-26	Admin. 2nd Floor	YORK	ZJ-102	2,060	450	144	80%	90.3	12.0	Yes	3	No
RTU-27	Admin. 1st Floor	YORK	ZJ-090	2,060	300	144	80%	82.1	12.0	Yes	3	No

Table 4: Split System Air Conditioner Schedule

Split System Air Conditioner										
Tag	Area Served	Manufacturer	Model	Air Flow (CFM)	Cooling Capacity (MBH)	Cooling Efficiency (SEER)				
AC-1 / ACCU-1	Mis	CARRIER	40-MVC-012	365	12.0	13.0				
AC-2 / ACCU-2	Elev Equip Room	CARRIER	40-MVC-009	325	9.0	13.0				

Table 5: Electric Heating Coil Schedule

	Electric Heating Coil											
Tag	Area Served	Manufacturer	Model	Air Flow (CFM)	Heating Capacity (MBH)							
EDH-1	Conference	INDEECO	QUZ	225	6.8							
EDH-2	Security	INDEECO	QUZ	225	6.8							
EDH-3	EDH-3 Office EDH-4 Conference		QUZ	175	5.1							
EDH-4			QUZ	175	5.1							
EDH-5	Conference	INDEECO	QUZ	410	11.9							

Table 6: Air-to-Air Heat Pump Schedule

Air-to-Air Heat Pump											
Tag	Area Served	Manufacturer	Model	Heating Capacity (MBH)	Heating Efficiency	Cooling Capacity (MBH)	Cooling Efficiency (EER)				
HP-1	FCU-1	YORK	YHJD36-S44S4	32.5	1	35.5	11				

Table 7: Exhaust Fan Schedule

	Exhaust Fan Schedule											
Tog	Area Comed	Manufacturer	Model	Air Flow	Exhaust	For DDM						
Tag	Area Served	ivianufacturer	iviodei	(CFM)	Fan HP	Fan RPM						
EF-1A	Kitchen	GREENHECK	CUBE-101HP	600	0.5	1,725						
EF-1B Service		GREENHECK	CUBE-101HP	600	0.5	1,725						
EF-2	Archery	GREENHECK	SQ-120-VG	1000	0.5	1,725						
EF-3	Mountain	GREENHECK	SQ-120-VG	1000	0.5	1,725						
EF-4 Restrooms		GREENHECK	GB-131	1,675	0.75	1,725						
EF-5	Electrical	GREENHECK	GB-121	1,200	0.75	1,725						
TF-1 THRU 8	Vault	GREENHECK	SQ-130-VG	1,500	0.75	1,725						

Table 8: Fan Coil Unit Schedule

			Fan Coil Uni	t (Electric)					
Tag	Area Served	Manufacturer	Model	Air Flow (CFM)	Min OA (CFM)	Heating Capacity (MBH)	Heating Efficiency	Cooling Capacity (MBH)	Cooling Efficiency (EER)
FCU-1	Equip Room	YORK	MA16CN41	1,200	300	45.2	-	35.5	-

6.2 Lighting

The main lighting in the open main floor retail space consists of suspended 16" diameter pendant fixtures with compact fluorescent lamps. Flood task lighting is used to highlight special retail features primarily around the perimeter. The lighting in the offices consists of 2 ft x 4 ft T8 recessed troffers. The warehouse lighting consists of a mixture of three lighting fixture types: 2ft x 4 ft T5 suspended high bay fluorescent fixtures with 6 lamps per fixture or 3 lamps per fixture, and 48 inch long 2 lamp T8 strip lighting. The Storage area, electrical rooms and server room lighting consists of T8 4 ft suspended linear fixtures.

6.3 Controls

According to the Regional Facilities Manager, the facilities have web-based DDC of the HVAC systems. All adjustments and monitoring of the controls are conducted through an outside independent agency. A contracted firm provides quarterly Preventive Maintenance (PM) on the units. The PM includes changing filters, performing functional testing on the units and calibration of sensors.

There are a total of 27 roof top units (RTUs) that serve the facility. All units are scheduled to operate from 6:00 am – 10:00 pm Monday – Saturday and 6:00 am – 8:00 pm Sunday. One unit is scheduled to operate continuously to provide minimum conditioning during off hours. During occupied periods the building controls in the sales, office and warehouse spaces are set to maintain 72 degF cooling and 67 degF heating. The IT room is set to always maintain 65 degF. The unoccupied temperatures are set for 76 degF cooling and 61 degF heating. Local area sensors maintain space temperature. Each unit has a CO2 sensor but it is not confirmed that the units are configured to provide demand control ventilation. Each unit has economizer function. It is not confirmed that the economizers are operational.

The lighting in the retail area, offices and warehouse are scheduled to be ON from 6:30 am – 9:30 pm Monday – Sunday. Track and accent lighting are scheduled ON from 6:30 am – 9:30 pm Monday – Sunday. Occupancy sensors are used in conference spaces.

7 Detailed Energy Efficiency Measures

EEM 1 – Upgrade Lighting in Retail Area and Warehouse

EXISTING CONDITIONS - Retail Area

The general lighting in the retail space consists of 338 fixtures suspended from the ceiling with compact fluorescent fixture in each, with an estimated 168 watt per fixture.

Replace the existing lamps with LED lamps in each fixture. Replacement fixtures are estimated to have 84 watts per fixture.

EXISTING CONDITIONS - Warehouse

In the warehouse there are three types of suspended light fixtures. According to the Lighting Fixture Schedule and current drawings these are as follows:

Type FL: 6 lamp 32 watt T5; 192 watt per fixture; 9 fixtures total

Type FZ: 3 lamp 32 watt T5; 96 watt per fixture; 37 fixtures total

Type FP: 48" long strip lighting fixture, 2 lamp, T8 64 watt per fixture; 52 fixtures total

PROPOSED MEASURE DESCRIPTION

Replace the existing lamps in the Retail Area with LED lamps in each fixture. Replacement fixtures are estimated to have 84 watts per fixture.

Replace existing Warehouse lamps with 150 watt LED lamp in each fixture.

SAVINGS METHODOLOY

Savings are estimated using a spreadsheet calculation.

ESTIMATED COST

The estimated cost for Retail lighting upgrade is \$16 per fixture and an additional cost of \$40 per fixture for installation.

The estimated cost for the Warehouse lighting upgrade is \$110 per Type FL and FZ fixture and \$40 per Type FP fixture, including installation.

EEM #1 Estimated Savings			
Annual Energy Usage & Savings Estimate	Baseline Electric Usage (kWh)		381889
	Proposed Electric Usage (kWh)		195973
	Electric Savings (kWh)		185916
	Electric Cost Savings (\$)	\$	5,392
	Baseline Demand (kW)		65
	Proposed Demand (kW)		34
	Demand Savings (kW)		32
	Demand Cost Savings =	\$	112
	Baseline Natural Gas Usage (Therms)		0
	Proposed Natural Gas Usage (Therms)		0
	Natural Gas Savings (Therms)		0
	Natural Gas Savings (\$)	\$	-
	Annual Energy Cost Savings	\$	5,503
	Project Cost	\$	26,686
Measure Cost & Simple Payback	Simple Payback (Cost/Savings)		4.8

EEM 2 - Vestibule Electric Heaters Scheduling

EXISTING CONDITIONS

There are 3 ceiling mounted electric heaters of 4 kW each located in each of the entry vestibules. According to the store manager the heaters run in mild conditions, prompting the store personnel to open the doors to relieve the heat from the spaces. During the site visit, the ambient temperature was 60 degF, the electric heaters were operating, and the vestibules were overheating. Currently the staff does not have control over the electric heater temperature settings.

PROPOSED MEASURE DESCRIPTION

Reset the electric heater temperature control to prevent vestibule spaces from overheating.

SAVINGS METHODOLOY

Savings are estimated using a spreadsheet calculation and bin data.

Energy savings calculations assumes that the electric heaters are operating when the ambient temperature is between 50-60 degF, or approximately 1120 hours per year which can be reduced with control strategy to lock out operation of heaters at ambient temperature of 50 degF and above.

ESTIMATED COST

The estimated cost is \$100 per unit heater.

EEM #2 Estimated Savings				
	Electric Savings (kWh)		13440	
	Electric Cost Savings (\$)	\$	390	
	Baseline Natural Gas Usage (Therms)		0	
	Proposed Natural Gas Usage (Therms)		0	
	Natural Gas Savings (Therms)		0	
	Natural Gas Savings (\$)	\$	-	
	Annual Energy Cost Savings	\$	300	
Measure Cost & Simple	Project Cost	\$	300	
Payback	Simple Payback (Cost/Savings)		1.0	

EEM 3 – Demand Control Ventilation on Roof Top Units

EXISTING CONDITIONS

There are 15 packaged rooftop units that serve the retail portion of the facility. The units all have economizer dampers and CO2 sensors. There is no evidence that the units vary the outside air based on occupancy. In the main store the patron occupancy varies throughout the day, with peak occupancy occurring from noon- 4:00 pm daily. The Contract Documents show that the design minimum outside air is based on ASHRAE 62.1. This equates to 18,000 CFM for the 15 units that serve the main retail space.

PROPOSED MEASURE DESCRIPTION

Configure the existing DDC system to vary the outside air based on CO2 sensors.

SAVINGS METHODOLOY

Savings are estimated using a spreadsheet calculation.

EEM is calculated for savings assuming the OSA varies based on CO2 readings and a varying occupancy of patrons. The current OSA values assume 18,000 CFM during the occupied periods. The design documents indicate that the minimum OSA based on demand control ventilation can be reduced to 4,500 CFM.

EEM savings based on bin data for Portland, Oregon, and savings calculations for reducing the outside air heating and cooling energy use.

ESTIMATED COST

The estimated cost is estimated at \$300. The units currently have CO2 sensors and DDC.

EEM #3 Estimated Savings						
Annual Energy Usage & Savings Estimate	Baseline Electric Usage (kWh)		67578			
	Proposed Electric Usage (kWh)		16894			
	Electric Savings (kWh)		50683			
	Electric Cost Savings (\$)	\$	1,520			
	Baseline Natural Gas Usage (Therms)		4447			
	Proposed Natural Gas Usage (Therms)		1112			
	Natural Gas Savings (Therms)		3336			
	Natural Gas Savings (\$)	\$	3,202			
	Annual Energy Cost Savings	\$	4,723			
	Project Cost	\$	300			
Measure Cost & Simple Payback	Simple Payback (Cost/Savings)		0.1			

EEM 4 – Economizer Control of Roof Top Units (RTUs)

EXISTING CONDITIONS

There are 15 packaged rooftop units that serve the retail portion of the facility. The units all have economizer dampers specified on the Mechanical Equipment Schedules. There is no evidence that the economizer control is currently functioning.

PROPOSED MEASURE DESCRIPTION

Configure the existing DDC system to provide economizing on all rooftop units, provide fault detection on units to verify economizer operation, and send a signal to the DDC system in case of economizer failure.

SAVINGS METHODOLOY

Savings are estimated using a spreadsheet calculation.

EEM is calculated for savings assuming 100% ambient outside air provides cooling during occupied periods when free cooling is available.

EEM savings based on bin data for Portland, Oregon, and savings calculations for reducing compressor use when free cooling is available.

ESTIMATED COST

The estimated cost is \$560 per unit to provide economizer fault detection. The units currently have economizers and DDC.

EEM #4 Estimated Savings			
Annual Energy Usage & Savings Estimate	Baseline Electric Usage (kWh)	277	7506
	Proposed Electric Usage (kWh)	218	3700
	Electric Savings (kWh)	58	3806
	Electric Cost Savings (\$)	\$ 1,	705
	Baseline Natural Gas Usage (Therms)		0
	Proposed Natural Gas Usage (Therms)		0
	Natural Gas Savings (Therms)		0
	Natural Gas Savings (\$)	\$	-
	Annual Energy Cost Savings	\$ 1,	705
Measure Cost &	Project Cost	\$8,!	500
Simple Payback	Simple Payback (Cost/Savings)		5.0

8 Appendices

8.1 Site Photos

Figure A: Rooftop Surface Area

Figure B: RTU (YORK)

Figure C: Primary Sales Floor Lighting

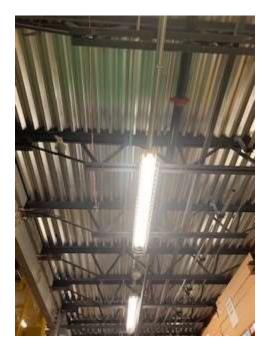


Figure D: Warehouse Track Lighting

Figure E: Warehouse Lighting, 3 Lamp

Figure F: Warehouse Lighting, 6 Lamp

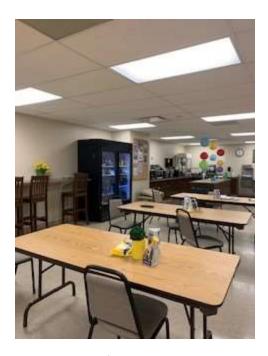


Figure G: Break Room

Figure H: Office Spaces