ORC003

09.09.2022

Prepared by: Suzanne Marinello, P.E. Jacob Gradwohl Yuki Klein

Hyslop Field Research Laboratory 3455 NE Granger Ave Corvallis, OR 97330

Table of Contents

Abbreviations	1
Disclaimer	2
Preface	3
Related Contacts	4
Building Efficiency Measure (EEM) Summary	4
Building Description	5
Best Practice	7
Energy Cost Analysis	8
Major Energy Consuming Equipment Mechanical Systems Lighting Systems Controls	9 9 10 10
Detailed Energy Efficiency Measures EEM 1: Lighting Upgrade EEM 2: Occupancy Sensors EEM 3: Envelope Upgrade EEM 4: Programmable Thermostats EEM 5: Motor Upgrade	11 11 13 15 18 19
Appendix Light Fixture Photos Mechanical Photos	20 20 24

Abbreviations

- AFUE Annual Fuel Utilization Efficiency
- AHU Air Handling Unit
- BTU British Thermal Unit
- CFM Cubic Feet (per) Minute
- CMU Concrete Masonry Unit
- CV Constant Volume
- DAT Discharge Air Temperature
- DDC Direct Digital Control(s)
- DegF Degrees Fahrenheit
- DOE Department of Energy
- DHW Domestic Hot Water
- dP Discharge Pressure
- dT Delta T (Temperature difference)
- DX Direct Expansion
- EEM Energy Efficiency Measure
- EFLH Estimated Full Load Hours
- ETO Energy Trust of Oregon
- EUI Energy Use Index
- HC Heating Coil
- HP Horsepower
- Hr Hour
- HVAC Heating Ventilating & Air Conditioning
- HW Heating Water

- HWP Heating Water Pump
- IAC Industrial Assessment Center
- kBtu 1,000 Btus
- kW Kilowatt
- kWh Kilowatt-hours
- lbs Pounds
- LPD Lighting Power Density
- MBH kBtu/hr (1,000 BTU/hr)
- MAT Mixed Air Temperature
- OAT Outside Air Temperature
- RAT Return Air Temperature
- RF Return Fan
- SAT Supply Air Temperature
- sf Square Feet
- SF Supply Fan
- SOO Sequence of Operations
- SP Static Pressure
- TMY3 Typical Meteorological Year
- TU Terminal Unit
- VAV Variable Air Volume
- VFD Variable Frequency Drive
- W Watts
- Yr Year

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The intent of this energy analysis is to estimate energy savings associated with the recommended energy efficiency upgrades. This report is not intended to serve as a detailed engineering design document. Any description of proposed improvements that may be diagrammatic in nature are for the purpose of documenting the basis of cost and savings estimates for potential energy efficiency measures only. Detailed design efforts may be required by the participant to implement measures recommended as part of this energy analysis. While the recommendations in this study have been reviewed for technical accuracy and are believed to be reasonably accurate, all findings listed are estimates only. Actual savings and incentives may vary based on final installed measures and costs, actual operating hours, energy rates and usage.

Preface

The Commercial Building Energy Audit (CBEA) program is funded by the DOE and structured within the framework of its predecessor and parent program, the Industrial Assessment Center (IAC). The purpose of the CBEA is to provide customers with free energy assessments of commercial buildings, thereby increasing energy efficiency while simultaneously expanding the workforce of building efficiency professionals through the application of student participation from partnered colleges and universities. The scope of such audits is limited in nature, for the express purpose of identifying no-cost and low-cost energy savings opportunities, and a general view of potential capital improvements. This is accomplished by means of utility usage and billing evaluation, along with observation and analysis of energy using systems. The findings and recommendations within this report represent the conditions observed at the time of this site survey. Conditions and equipment usage are subject to change, and therefore the conclusions expressed within this report may not be evident in the future. The CBEA audit team has endeavored to meet what it believes is the applicable standard of care ordinarily exercised by others in conducting this energy audit. No other warranty, express or implied, is made regarding the information contained in this report.

Related Contacts

Participant (Cust	tomer) Contact
Contact Name	Lowell Faucett
Title	Oregon State University Architect
Phone	541-737-5903
Email	lowell.fausett@oregonstate.edu
Participant (Cust	tomer) Contact
Contact Name	Joshua Price
Title	Hyslop Research Facility Director
Phone	971-285-0306
Email	joshua.price@oregonstate.edu
CBEA Contact	
Contact Name	Suzanne Marinello P.E.
Title	Lead Energy Analyst Lead Instructor
Phone	541-207-8205
Email	marinellos@lanecc.edu
CBEA Contact	
Contact Name	Jacob Ray Gradwohl
Title	Lead Student Intern
Email	gradwoja@oregonstate.edu
CBEA Contact	
Contact Name	Yuki Klein
Title	Student Intern
Email	kleiny@oregonstate.edu

Building Efficiency Measure (EEM) Summary

These energy efficiency measures (EEMs) are suggested for the facility. Cost savings are based on average utility rates for electricity and natural gas. Actual rates and cost savings will differ. Non-energy cost benefits are related to cost-savings due to as-avoided maintenance. Simple payback is estimated using current utility rates and estimated project costs, which may vary over time.

			Annual Energy	and Cost Savin	gs		Measure Cost and Simple Pay		ost and Simple Payback
Measure Number	Measure Description	Electricit	y Savings	Gas Fuel Savings	To S	tal Cost avings	Ν	Aeasure Cost	Simple Payback
		kWh	kW	Therms					Year
EEM 1	Lighting Upgrade*	30258	10	-	\$	3,123	\$	37,260	12
EEM 2	Occupancy Sensors	6750	-	-	\$	683	\$	3,000	4
EEM 3	Building Insulation*	34860	-	-	\$	3,529	\$	72,976	20.7
EEM 4	Programmable Thermostats	7500	-	-	\$	759	\$	2,250	3
EEM 5	Premium Efficient Motors*	604	-	-	\$	61	\$	300	5
Totals (Recom	nmended Measures)	79972		0	\$	8,155	\$	115,786	14

Table 1. EEM Cost Estimates

Building Description

The Field Research Laboratory is a 16,500 sf building in Corvallis, Oregon. The laboratory was originally constructed in 1973. There has been one major addition on the northside of the facility, but the date of the addition is unknown.

The primary objective of the Field Research Laboratory is to conduct field research, extension, and teaching related to the development, production, and management of agronomic crops. The laboratory operates all year round. There is no schedule for the lights, staff come and go on their own accord. All lighting is controlled by manual wall switching.

The building is shaped like a backwards "c," with the entrance of the building (bottom of the c configuration) is where the labs, office, rest rooms, and storage closet rooms are located. The hall that connects to upper and lower part of the building is where the coolers, cabinet dryers, and the larger labs are located. The upper part of the "c" configuration is where the fumigation, laboratory, and seed storage rooms are located.

The labs near the front entrance have been upgraded to double pane, vinyl framed windows. The exterior walls of the front entrance have also been upgraded to (approx) R-11 wall insulation. The remaining windows of the facility are the original single pane, metal frame windows. Except for the front entrance, the exterior walls are uninsulated, consisting of wood framing and wood siding. There is no ceiling or roof insulation visible. All the windows are manually operated to provide ventilation.

The section where the cooler and dryer are located is covered by expanded metal and concrete flooring. The cooler is refrigerated with a split system Carrier unit, with evaporators mounted along the wall, and the outdoor condensing unit mounted on the ground adjacent to the space. The ceiling of the walk-in consists of lay-in ceiling tiles with fluorescent light fixtures. Condensation is visible on the surface of the light fixtures, indicating a need for a vapor barrier in the space.

The north end of the facility (the addition) consists of an open storage room. This space is heated by a ceiling mounted gas fired unit heater. There is a hood located in the room with make-up air from wall mounted exterior wall louvers.

The laboratories are used to conduct agricultural research. Crops are collected from the surrounding fields and processed on site. The main staff consists of students conducting research and their occupancy schedules vary depending on the season. At the time of the site visit, there were observed to be less than 10 occupants present. The facility is heated with electric wall heaters which are manually controlled by wall mounted thermostats. There is no mechanical ventilation in any of the labs and offices.

There is no air conditioning of the labs or offices, except for a couple single wall mounted air conditioning units located in one of the labs and the maintenance garage.

Best Practice

This audit is per ASHRAE Level 1 requirements. The building's energy cost and efficiency were assessed by analyzing 2021 utility data.

Utility analysis was used to produce reports on the monthly consumption of both electricity and natural gas.

The mechanical and lighting schedules were used to generate outlines of energy usage in terms of demand and energy consumption.

A site visit conducted on July 26, 2022 provided a walk-through survey of the facility including its construction, operation, and maintenance, and major energy consuming equipment. Feedback from the customer related to facility performance and comfort was used to inform the survey and the resulting recommendations within this report.

The data was then used to identify no-cost and low-cost measures for improving energy efficiency. Because calculations at this level are minimal, savings and costs are approximate.

Energy Cost Analysis

Table 2. 2021 Energy Use

			2021 Electrical Data			
Month	kWh	kWh Charge	Charge / kWh	kW	kW Charge	Fees
Jan	9,400	978	\$0.104	36	\$ 228	\$ 110
Feb	12,840	1,266	\$0.099	40	\$ 226	\$ 110
Mar	10,200	1,068	\$0.105	46	\$ 228	\$ 110
Apr	12,720	1,190	\$0.094	40	\$ 226	\$ 110
May	11,360	1,130	\$0.099	36	\$ 228	\$ 110
Jun	12,560	1,188	\$0.095	36	\$ 226	\$ 110
Jul	9,280	923	\$0.099	36	\$ 228	\$ 110
Aug	7,960	861	\$0.108	40	\$ 226	\$ 110
Sep	7,640	837	\$0.110	40	\$ 228	\$ 110
Oct	9,960	1,024	\$0.103	36	\$ 226	\$ 110
Nov	10,120	1,053	\$0.104	40	\$ 228	\$ 110
Dec	10,680	1,108	\$0.104	36	\$ 226	\$ 110
TOTALS	124,720	\$12,626.00	\$0.10	462.00	\$2,724.00	\$1,320.00

	2021 Natural Gas Data						
Month	Therms	Cost	Cost / Therm	Other Charges	Total		
Jan	223.1	\$178.97	\$0.802	\$58.00	\$236.97		
Feb	254.7	\$204.32	\$0.802	\$16.87	\$221.19		
Mar	66.2	\$53.10	\$0.802	\$44.45	\$97.55		
Apr	18.9	\$15.16	\$0.802	\$32.31	\$47.47		
May	9.6	\$7.70	\$0.802	\$28.04	\$35.74		
Jun	798.4	\$640.47	\$0.802	\$18.81	\$659.28		
Jul	757.0	\$607.26	\$0.802	\$16.05	\$623.31		
Aug	146.9	\$117.84	\$0.802	\$16.05	\$133.89		
Sep	113.1	\$90.73	\$0.802	\$16.11	\$106.84		
Oct	255.5	\$204.96	\$0.802	\$16.79	\$221.75		
Nov	921.5	\$796.26	\$0.864	\$61.93	\$858.19		
Dec	381.3	\$362.92	\$0.952	\$55.52	\$418.44		
TOTALS	3,946.2	\$3,279.69	\$0.83	\$380.93	\$3,660.62		

Major Energy Consuming Equipment

Mechanical Systems

There were no mechanical schedules available for the building but the following information was obtained through observation.

The facility has no cooling system except a couple post-construction wall mounted air conditioners for some workspaces. Heating in the offices and labs is provided by wall mounted electric heaters. Heating in the north process labs is provided by gas fired unit heaters mounted directly in the space.

There is a walk-in cooler provided with a split system air conditioning unit. The evaporator is in the room and the condenser is located outside the lab building.

In the main entrance corridor there is a gas fired Reznor unit which provides process drying of crops and seeds.

Domestic water heating is provided by two tank type electric water heaters. Water heating is limited to lab and restroom sinks

The following tables detail the information available through nameplates. Please see Appendix II for accompanying figures.

Table of opin of storn oon	oddio		
Тад	Area Served	Manufacturer	Model
C-1	Refrigerator	(Unreadable)	OHB10L44-E

Table 3. Split System Schedule

Table 4. Water Heater Schedule

Tag	Manufacturer	Model	Manufacture Date	Capacity (Gal)
WH-1	General Electric	PE40M09AAH	July 2011	40
WH-2	Rheem	PRoE50 T2 AH95	November 2015	50

Table 5. Motor Schedule

Тад	Manufacturer	Model
M-1	A.O. Smith	SOP2201
M-2	Century	SC-213-FC3-35
M-3	Baldor	35B101P499H1

Lighting Systems

The lighting in the space consists of 15 fixture types as detailed from the Architect. Please see Appendix I for accompanying figures. A majority of the labs are lit by types A and C, though processing and specialized areas use the remaining types.

Table 6. Existing Lighting

	Exi	sting Lighting		Total Watt per Fixture		
Fixture Type	Description	Watt/Fixture	Quantity	Total Watt per Fixture		
	Surface Wrap with acrylic lens, 4					
A	ft with 2 lamps fluorescent	60	79	4740		
	Industrial - Open lamps with					
	reflector 4 ft long 4 lamps					
В	fluorescent	160		0		
	Surface Wrap with acrylic lens, 8					
С	ft with 2 lamps fluorescent	120	10	1200		
	Industrial strip - Open lamps with					
D	reflector 8 ft long with 4 lamps	120		0		
E	Keyless Incansescent	60	8	480		
-	High mount round HAT					
F	incansdescent or CFL	300	5	1500		
G	Jelly jar incandescent	100		0		
н	Pendant stem - HAT incandescent	300	6	1800		
	Clasified (explosion proff) jelly jar					
1	incandescent	200	4	800		
	Industrial strip with specular					
J	reflector 4 ft with 2 lamps	60	56	3360		
	Ice cube trap 4 ft 2 lamp T12	120		400		
ĸ	fluorescent	120	4	480		
L	Troffer 2 x 4 4 lamp fluorescent	120	2	240		
м	Exterior Barn Light	200	4	800		
	Exterior Small wall pack over					
N	man door	75	1	75		
	Exterior Wallpack medium front					
0	entrance	175	2	350		
			SUM	15825		

Controls

Lighting and heating operate during occupied periods and are manually controlled.

Detailed Energy Efficiency Measures

EEM 1: Lighting Upgrade

EXISTING CONDITIONS

The general lighting of the space consists of 15 different fixtures. These fixtures are old and mostly fluorescent, with an estimated range of 60 to 300 watts per fixture depending on the type.

PROPOSED MEASURE DESCRIPTION

Replace existing lamps with LED lamps for each fixture. These are estimated to be 20 to 80 watts depending on the type.

Table 7. Lighting Fixture Upgrade

	Exis	ting Lighting				Proj	oosed Lightin	g	
Fixture Type	Description	Watt/Fixture	Quantity	Total W Type	/att Fixture Fixtur Type	e Description	Watt/Fixture	Quantity	Total Watt Fixture Type
	Surface Wrap with acrylic lens, 4 ft		~~			EMS-L48-4000LM-IMAFL-WD-		-	
А	with 2 lamps fluorescent		60	79	4740 L1	40K-80CRI	24	. /9	1896
	Industrial - Open lamps with								
D	flueressent		160	10	1000 10	EMS-L24-9000LIM-PST-MD-40K-	50	10	
в	Tiuorescent		160	10	1600 L2		59	10	590
c	surface wrap with acrylic lens, 8 it		120	10	1200 1 2	EIVIS-L98-9000LIVI-IIVIAFL-WD-	53	10	. 520
C	with 2 lamps hubrescent		120	10	1200 L3		55	10	530
D	reflector 8 ft long with 4 lamps		120		0.14	40K-80CPI	52		0
F	Keyless Incansescent		60	8	480 15		20	5	160
-	High mount round HAT			0	100 25	PXI W-100001 M-WD-40K-80CBI			
F	incansdescent or CEL		300	1	300 1.6	PM	74	. 1	74
						PXLW-5000LM-WD-40K-80CRI-			
G	Jelly jar incandescent		100	1	100 L7	PM	35	1	35
						PXLW-10000LM-WD-40K-80CRI-			
н	Pendant stem - HAT incandescent		300	6	1800 L8	PM	74	. 6	5 444
	Clasified (explosion proff) jelly jar								
1	incandescent		200	4	800 L9	HRLL-8L-GO-AS-50K-CM	94	. 4	376
	Industrial strip with specular					EMS-L48-4000LM-IMAFL-WD-			
J	reflector 4 ft with 2 lamps		60	56	3360 L10	40K-80CRI	24	56	5 1344
	Ice cube trap 4 ft 2 lamp T12					EMS-L48-4000LM-IMAFL-WD-			
К	fluorescent		120	4	480 L11	40K-80CRI	24	. 4	96
L	Troffer 2 x 4 4 lamp fluorescent		120	2	240 L12	HVT-2X4-DOP-5500-4OK	52	2	2 104
М	Exterior Barn Light		200	4	800 L13	PCLL	79	4	316
Ν	door		75	1	75 L14	HLWPC2-P10-40K-TFTM	28	1	28
0	entrance		175	1	175 L15	HLWPC2-P30-40K-TFTM	71	. 1	71
					16150				6064
			On Time H	lrs					
	Total Existing Watt	16	150	3000	48450 kWh				
	Total Proposed Watt	e	064	3000	18192 kWh				

SAVINGS METHODOLOGY

Sayings are estimated using a spreadsheet calculation.

ESTIMATED COST

The estimated installation costs are as described in Table 7. Assuming 3000 hours of run time for all fixtures and \$0.1 per kWh the following savings were estimated.

	EEM #1 Estimated Savings		
	Baseline Electric Usage (kWh)		48450
	Proposed Electric Usage (kWh)		18192
	Electric Savings (kWh)		30258
	Electric Cost Savings (\$)	\$	3,063
Appual Eports (Licago & Savings	Demand Savings (kW)	\$	10
Estimate	Electric Demand Savings (\$)		59
Estimate	Baseline Natural Gas Usage (Therms)	-	
	Proposed Natural Gas Usage (Therms)	-	
	Natural Gas Savings (Therms)	-	
	Natural Gas Savings (\$)	-	
	Annual Energy Cost Savings	\$	3,123
	Project Cost	\$	37,260
Measure Cost & Simple Payback	Simple Payback (Cost/Savings)		11.9

EEM 2: Occupancy Sensors

EXISTING CONDITIONS

There are currently no occupancy sensors on site.

PROPOSED MEASURE DESCRIPTION

Add occupancy sensors for each room/area.

SAVINGS METHODOLOGY

Savings are estimated using a spreadsheet calculation. Existing ON time is estimated at 3000 hrs. Occupancy sensors are estimated to reduce ON time to 2500 hours per year, a reduction of 500 hrs. (A reduction of approx. 16% in ON time).

Fixture Type	Description	Watt/Fixture	Quantity	Total Watt Fixture Type
	Surface Wrap with acrylic			
	lens, 4 ft with 2 lamps			
	fluorescent	60	/9	4740
	reflector 4 ft long 4 lamps			
	fluorescent	160		0
				-
	Surface Wrap with acrylic			
	fluorescent	120	10	1200
	Industrial strip - Open lamps	120	10	1200
	with reflector 8 ft long with 4			
	lamps	120		0
	Keyless Incansescent	60	8	480
	High mount round HAT			
	incansdescent or CFL	300	1	300
	Jelly jar incandescent	100	1	100
	Pendant stem - HAT			
	incandescent	300	6	1800
	Clasified (explosion proff)	200		
	Jelly Jar Incandescent	200	4	800
	reflector 4 ft with 2 lamos	60	56	3360
	Ice cube tran 4 ft 2 Jamp T12	00	50	2300
	fluorescent	120	4	480
	Troffer 2 x 4 4 Jamp			
	fluorescent	120	2	240

kWh = watts/1000 x ON time hr

40500 kWh Existing Assume O 33750 kWh Proposed Assume re

Assume On Time at 3000 hrs per year Assume reduce to 2500 hrs per year ON time

ESTIMATED COST

Assuming \$0.1 per kWh, 20 sensors, and \$150 per sensor, the following costs were estimated.

EEM #2 Estimated Savings							
Annual Energy Usage & Savings Estimate	Baseline Electric Usage (kWh)		40500				
	Proposed Electric Usage (kWh)		33750				
	Electric Savings (kWh)		6750				
	Electric Cost Savings (\$)	\$	683				
	Baseline Natural Gas Usage (Therms)						
	Proposed Natural Gas Usage (Therms)	-					
	Natural Gas Savings (Therms)	-					
	Natural Gas Savings (\$)	\$	-				
	Annual Energy Cost Savings	\$	683				
	Project Cost	\$	3,000				
Measure Cost & Simple Payback	Simple Payback (Cost/Savings)		4.4				

EEM 3: Envelope Upgrade

EXISTING CONDITIONS

The current envelope includes an uninsulated sheet metal roof, concrete and sheet metal walls. The exterior walls of the front offices have been upgraded with R-11 insulation and double pane windows with vinyl frames. The remaining walls and roof are uninsulated. In addition, the remaining lab windows are single pane, metal framed operable windows.

PROPOSED MEASURE DESCRIPTION

Extend insulation throughout spaces to create a full thermal envelope. Replace single pane windows with updated and thermally efficient windows. Insulate the roof to further thermal envelope.

SAVINGS METHODOLOGY

Savings based on spreadsheet calculations and eQUEST modeling.

Figure 1. eQUEST model

Figure 2. Estimated energy usage for current building

Figure 3. Estimated energy usage for retrofit building

ESTIMATED COST

The envelope retrofit was estimated with prices sourced from the Architect for an approximate total of \$73,000. Combined with the eQUEST energy data, the following costs were estimated.

EEM #3 Estimated Savings						
Annual Energy Usage & Savings Estimate	Baseline Electric Usage (kWh)		135180			
	Proposed Electric Usage (kWh)		100320			
	Electric Savings (kWh)		34860			
	Electric Cost Savings (\$)	\$	3,529			
	Baseline Natural Gas Usage (Therms)	-				
	Proposed Natural Gas Usage (Therms)	-				
	Natural Gas Savings (Therms)	-				
	Natural Gas Savings (\$)	-				
	Annual Energy Cost Savings	\$	3,529			
Measure Cost &	Project Cost	\$	72,976			
Simple Payback	Simple Payback (Cost/Savings)		20.7			

EEM 4 Programmable Thermostats

EXISTING CONDITIONS

There are 15 electric wall heaters manually controlled.

PROPOSED MEASURE DESCRIPTION

Install programmable thermostats to create setpoints and manual override for temperature control.

SAVINGS METHODOLOGY

Savings based on spreadsheet calculations.

Elec Heater Use (kWh) = kW x hrs ON

Currently the electric unit heaters do not have programmable thermostats and are manually controlled. Providing programmable thermostats will reduce the amount of time the spaces are heated when the spaces are unoccupied. ON time is estimated to be reduced by 100 hours per year per unit heater.

15 Electric Unit Heaters

5 kW per heater

Overheating hours = 100 hr /unit heater

5 kW x 15 x 100 hrs = 7500 kWh overheating energy use per year.

ESTIMATED COST

At \$150 per thermostat the following costs were estimated.

EEM #4 Estimated Savings							
	Electric Savings (kWh)		7500				
	Electric Cost Savings (\$)	\$	759				
	Baseline Natural Gas Usage (Therms)		0				
	Proposed Natural Gas Usage (Therms)		0				
	Natural Gas Savings (Therms)		0				
	Natural Gas Savings (\$)	\$	-				
	Annual Energy Cost Savings	\$	759				
Measure Cost & Simple	Project Cost	\$	2,250				
Payback	Simple Payback (Cost/Savings)		3.0				

EEM 5: Motor Upgrade

EXISTING CONDITIONS

There are currently 3 85% efficiency 3 hp motors.

PROPOSED MEASURE DESCRIPTION

Replace with 91.7% efficiency motors.

SAVINGS METHODOLOGY

Savings based on spreadsheet calculations.

EEM #5				Calculations			
Premium Efficiency Motors							
				Power (kW) = HP x .746 kW/HP x Load/efficiency			
Elec Cost =	\$ C	0.101		Hrs =	1200	hrs run time per	year
				Load =	75%		
Existing Conditions				efficiency =	84%	existing	
3 Qty 3 HP Motors 84% eff				efficiency =	91.70%	Premuim	
Energy Use Existing =		7194	kWh	Energy Use = Power (kW) x hrs			
				Material Cost =	\$ 100	per motor	
Proposed Conditions							
3 Qty 3 HP Motors 91.7% eff		6590	kWh				

ESTIMATED COST

For 1200 operation hours per year and \$250 per motor the following savings were estimated.

EEM #5 Estimated Savings						
Annual Energy Usage & Savings Estimate	Baseline Electric Usage (kWh)		7194			
	Proposed Electric Usage (kWh)		6590			
	Electric Savings (kWh)		604			
	Electric Cost Savings (\$)	\$	61			
	Baseline Natural Gas Usage (Therms)	-				
	Proposed Natural Gas Usage (Therms)	-				
	Natural Gas Savings (Therms)	-				
	Natural Gas Savings (\$)	-				
	Annual Energy Cost Savings	\$	61			
Measure Cost & Simple	Project Cost	\$	300			
Payback	Simple Payback (Cost/Savings)		4.9			

Appendix

I. Light Fixture Photos

Figure A: Existing Fixture A

Figure B: Existing Fixture C

Figure C: Existing Fixture E

Figure D: Existing Fixture F

Figure E: Existing Fixture H

Fixture F: Existing Fixture I

Figure G: Existing Fixture J

Figure H: Existing Fixture K

Figure I: Existing Fixture L

Figure J: Existing Fixture M

Figure K: Existing Fixture N

Figure L: Existing Fixture O

II. Mechanical Photos

Figure M: Typical Wall Mounted Electric Heater

Figure N: Motor

Figure O: Motor Tag 1

Figure P: Motor Tag 2

Figure Q: Motor Tag 3

Figure R: Outdoor Condensing Unit

Figure S: Indoor Evaporator of Walk-In Cooler

Figure T: Reznor Gas Fired Dryer

Figure U: Gas Fired Unit Heater

Figure V: Typical Domestic Water Heater