

Jan 24, 2023

Prepared by: Suzanne Marinello P.E. Hailey Dawson Jacob Kinzer Max Teschner

Community College Building

Table of Contents

Abbreviations	2
Disclaimer	3
Preface	4
Related Contacts	5
Building Efficiency Measure (EEM) Summary	6
Building Description	7
Best Practices	8
Energy Cost Analysis	9
Major Energy Consuming Equipment	12
Mechanical	12
Lighting	14
Detailed Energy Efficiency Measures	15
EEM 1 Lighting Upgrade	15
EEM 2 Reduce Ventilation	17
EEM 3 Insulate Refrigerant Piping	18
EEM 4 Reinstate Functionality of Rainwater Harvesting System	20
Appendix	21
Appendix 1 Photos	21

Abbreviations

- AFUE Annual Fuel Utilization Efficiency
- AHU Air Handling Unit
- BTU British Thermal Unit
- CFM Cubic Feet (per) Minute
- CMU Concrete Masonry Unit
- CV Constant Volume
- DAT Discharge Air Temperature
- DDC Direct Digital Control(s)
- DegF Degrees Fahrenheit
- DOE Department of Energy
- DHW Domestic Hot Water
- dP Discharge Pressure
- dT Delta T (Temperature difference)
- DX Direct Expansion
- EEM Energy Efficiency Measure
- EFLH Estimated Full Load Hours
- ETO Energy Trust of Oregon
- EUI Energy Use Index
- HC Heating Coil
- HP Horsepower
- Hr Hour
- HVAC Heating Ventilating & Air Conditioning
- HW Heating Water

- HWP Heating Water Pump
- IAC Industrial Assessment Center
- kBtu 1,000 Btus
- kW Kilowatt
- kWh Kilowatt-hours
- lbs Pounds
- LPD Lighting Power Density
- MBH kBtu/hr (1,000 BTU/hr)
- MAT Mixed Air Temperature
- OAT Outside Air Temperature
- RAT Return Air Temperature
- RF Return Fan
- SAT Supply Air Temperature
- sf Square Feet
- SF Supply Fan
- SOO Sequence of Operations
- SP Static Pressure
- TMY3 Typical Meteorological Year
- TU Terminal Unit
- VAV Variable Air Volume
- VFD Variable Frequency Drive
- W Watts
- Yr Year

Community College*

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The intent of this energy analysis is to estimate energy savings associated with the recommended energy efficiency upgrades. This report is not intended to serve as a detailed engineering design document. Any description of proposed improvements that may be diagrammatic in nature are for the purpose of documenting the basis of cost and savings estimates for potential energy efficiency measures only. Detailed design efforts may be required by the participant to implement measures recommended as part of this energy analysis. While the recommendations in this study have been reviewed for technical accuracy and are believed to be reasonably accurate, all findings listed are estimates only. Actual savings and incentives may vary based on final installed measures and costs, actual operating hours, energy rates and usage.

ane

Preface

The Commercial Building Energy Audit (CBEA) program is funded by the DOE and structured within the framework of its predecessor and parent program, the Industrial Assessment Center (IAC). The purpose of the CBEA is to provide customers with free energy assessments of commercial buildings, thereby increasing energy efficiency while simultaneously expanding the workforce of building efficiency professionals through the application of student participation from partnered colleges and universities. The scope of such audits is limited in nature, for the express purpose of identifying no-cost and low-cost energy savings opportunities, and a general view of potential capital improvements. This is accomplished by means of utility usage and billing evaluation, along with observation and analysis of energy using systems. The findings and recommendations within this report represent the conditions observed at the time of this site survey. Conditions and equipment usage are subject to change, and therefore the conclusions expressed within this report may not be evident in the future. The CBEA audit team has endeavored to meet what it believes is the applicable standard of care ordinarily exercised by others in conducting this energy audit. No other warranty, express or implied, is made regarding the information contained in this report.

Related Contacts

Participant (Customer)	Participant (Customer) Contact						
Contact Name							
Title							
Phone							
Email							
CBEA Contact							
Contact Name	Suzanne Marinello P.E.						
Title	Lead Energy Analyst Lead Instructor						
Phone	541-207-8205						
Email	marinellos@lanecc.edu						
CBEA Contact							
Contact Name	Hailey Dawson						
Title	Student Intern						
Email	dawsonh2@lanecc.edu						
CBEA Contact							
Contact Name	Jacob Kinzer						
Title	Student Intern						
Email	kinzerj@lanecc.edu						

Building Efficiency Measure (EEM) Summary

These energy efficiency measures (EEMs) are suggested for the facility. Cost savings are based on average utility rates for electricity and natural gas. Actual rates and cost savings will differ. Non-energy cost benefits are related to cost-savings due to as-avoided maintenance. Simple payback is estimated using current utility rates and estimated project costs, which may vary over time.

Table 1: EEM Summary

		Annual Energy and Cost Savings						Measure Cost and Simple Payback		
Measure Number	Measure Description	Electricity Savings		Gas Fuel Savings		vings Savings				Simple Payback
		kWh	kW	Therms	MMBtu					Year
EEM 1	Lighting Upgrade	33732	10	-		\$	1,080	\$	12,000	11
EEM 2	Reduce Ventilation	52671	-	8272	827	\$	8,471	\$	1,000	0.1
EEM 3	Insulate Refrigerant Piping	2287	-	-		\$	72	\$	100	1.4
Totals		88691		8272	827	\$	9,622	\$	13,100	1

		Annual Water Use and Cost Savings						
Water Savings	er Savings Description		Water Savings			Total Cost Savings		
		Tgal	Cos		(less Pumping Energy Cost)		Year	
EEM 4	Reinstate Functionality of Water Harvesting System	110	\$	1,964	\$ 1,802		0.9	

Building Description

The Opportunity Center serves as a hub to connect students, employers and community members to the Community College. The facility is conveniently located on a major light rail transit line. The 100,000 square foot facility houses programs for the Workforce Training Center and its partner agencies, along with serving approximately 7500 students from the Community College. The facility is open from 8:00 am to 8:00 pm Monday – Friday.

The facility was opened in 2008, achieving a LEED Platinum rating from the US Green Building Council. The facility is a three-story structure, heavy mass construction, with a flat membrane roof, and energy efficient windows. Operable windows are designed to provide automatic night time ventilation to pre-cool the facility. Windows at the lower level open to let cool air infiltrate into the main lobby, while third floor windows allow the warmer air to exfiltrate by means of the natural ventilation through central open lobby core.

In addition to night flushing capability, the facility has been designed to provide rainharvesting for non-potable water use. Part of the rain-harvesting system includes large orange colored water gauges located at to front entrance to demonstrate the water level stored in the underground storage cisterns.

ane

Best Practices

This audit is per ASHRAE Level 1 requirements. The building's energy cost and efficiency were assessed by analyzing 2021's utility data.

Utility analysis was used to produce reports on the monthly consumption of both electricity and natural gas. The output from these reports was used to benchmark this building against the median EUI for buildings of its size and type in the local vicinity.

The mechanical and lighting schedules were used to generate outlines of energy usage in terms of demand and energy consumption.

A site visit conducted on December 14, 2022 provided a walk-through survey of the facility including its construction, operation, and maintenance, and major energy consuming equipment. Feedback from the customer related to facility performance and comfort was used to inform the survey and the resulting recommendations within this report.

The data was then used to identify no-cost and low-cost measures for improving energy efficiency. Because calculations at this level are minimal, savings and costs are approximate.

ane

Energy Cost Analysis

Table 2: 2021 Utility Data

	2021 Electrical Data									
Month	kWh	kV	/h Charge	Charge / kWh	kW	kW Charge	Fees			
Jan	113400	\$	3,633	\$0.03	199	\$279.27	\$1,754.34			
Feb	96000	\$	3,072	\$0.03	180	\$237.51	\$1,723.39			
Mar	86400	\$	2,744	\$0.03	192	\$289.71	\$1,729.25			
Apr	97200	\$	3,089	\$0.03	303	\$409.77	\$1,857.48			
May	109200	\$	3,518	\$0.03	318	\$435.87	\$1,987.47			
Jun	133200	\$	4,258	\$0.03	405	\$571.59	\$2,217.92			
Jul	152400	\$	4,947	\$0.03	472	\$629.01	\$2,377.72			
Aug	151800	\$	5,002	\$0.03	595	\$785.61	\$1,298.68			
Sep	130200	\$	3,771	\$0.03	452	\$608.13	\$3,918.28			
Oct	126000	\$	3,598	\$0.03	405	\$568.98	\$2,702.91			
Nov	108600	\$	3,493	\$0.03	340	\$495.90	\$2,628.68			
Dec	112800	\$	3,658	\$0.03	254	\$294.93	\$2,030.89			
TOTALS	1,417,200	\$	44,784	\$0.03	4,115	\$5,606.28	\$26,227.01			

	2021 Natural Gas Data										
Month	Therms	MMBTU	Cost	Cost / Therm	Other Charges						
Jan	2,833	283	\$2,371.69	\$0.837	none						
Feb	2,642	264	\$2,075.93	\$0.786	none						
Mar	2,545	254	\$2,090.77	\$0.822	none						
Apr	1,704	170	\$1,418.77	\$0.833	none						
May	1,098	110	\$952.83	\$0.868	none						
Jun	1,265	127	\$749.46	\$0.592	none						
Jul	829	83	\$694.82	\$0.838	none						
Aug	789	79	\$611.45	\$0.775	none						
Sep	936	94	\$777.95	\$0.831	none						
Oct	2,250	225	\$1,869.20	\$0.831	none						
Nov	2,331	233	\$1,992.90	\$0.855	none						
Dec	2,731	273	\$2,457.45	\$0.900	none						
TOTALS	21,952.5	2,195	\$18,063.22	\$0.823							

The facility has an EUI (Energy Utilization Index) of 74 kBtu/sf. The Energy Star Performance Scorecard rates the facility at 59 out of 100, which indicates there is significant area of improvement available for energy savings.

Figure 1: 2021 Electrical Use

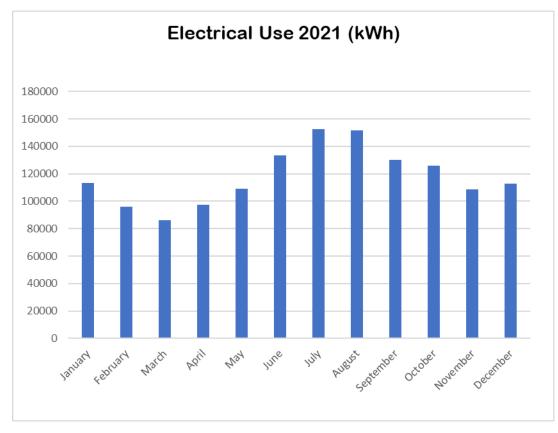
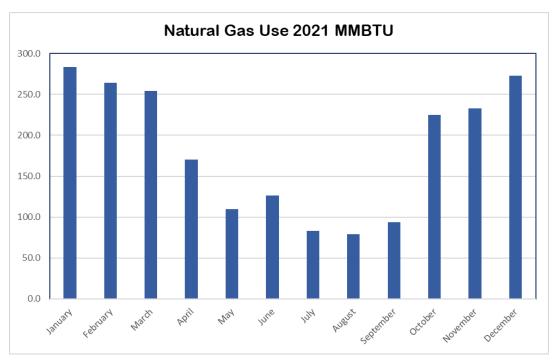
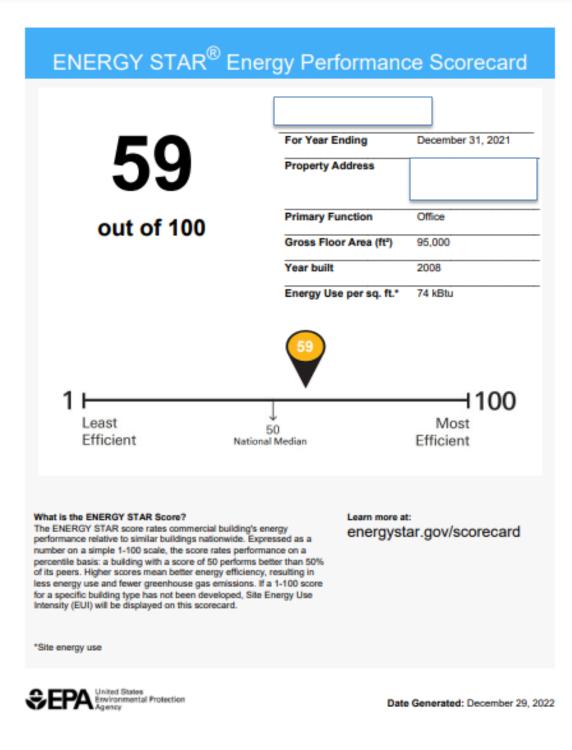




Figure 2: 2021 Natural Gas Use

Major Energy Consuming Equipment

Mechanical

Roof Mounted Air Handling Units

RTU-1 and 2

There are two identical mounted air handlers located on the roof. These two units provide and distribute the conditioned air throughout the building. They each have a supply fan and return fan variable speed to modulated air flow. Hot water coils provide heating. The heating water is controlled by 2-way valves to modulate heating water flow. Chilled water coils provide cooling. The chilled water flow is controlled at the units by 2-way valves to vary the chilled water flow. Each unit has full economizer control along with capability for demand controlled ventilation.

Boilers

B-1 and B-2

The boiler room is located on the rooftop of the building There are two high efficiency condensing boilers which provide heating water to the roof mounted air handlers and to reheat coils in the variable air volume terminal units throughout the facility. Two variable speed pumps distribute the heating hot water through a single primary piping system.

Chiller

ACC-1

There is single air cooled chiller located on the roof. The chiller provides chilled water to the roof mounted air handling units. The pumping system is comprised on two chilled water loops. The primary loop circulates through the chilled water through the chiller. The secondary loop circulates chilled water to the air handling units. All the chilled water pumps are variable speed.

Terminal Units

Variable air volume terminal units provide zone control. There are two types of units within the facility: Fan powered units and modulating variable air volume units. Both types of terminal units have hot water reheat.

Split system AC units

Split system air conditioning units provide cooling to electric rooms, telecom spaces, and elevator equipment rooms. The outdoor condensing units are located on the roof.

General Exhaust Fans

Roof mounted exhaust fans provide general exhaust for restrooms and laundry.

Unit Heater

There is a single hot water heater that provides heating for the loading dock area.

Natural Ventilation

Operable windows on the first floor allow for natural ventilation, which can be vented from the facility through operable windows at the upper level of the main open lobby.

Domestic Hot water

There is a single high efficient condensing hot water heater located in the roof mechanical boiler room. It provides domestic hot water for the entire building. Water is tempered with a mixing valve located in the boiler room and recirculated throughout the system with a recirculation

pump.

Rain Harvesting System

Outside the building there is a 15,000 gallon cistern located underground that is designed to catch rainwater along with a 685 gallon storage tank in the Loading Dock Area. As part of the underground cistern system, there are that are large calibrated gauges visible from the main doors that demonstrate the real time water levels of the underground cistern. The rainwater system is designed to provide greywater for toilet flushing.

Table 3: Roof Mounted Air Handling Units

Rooftop Air Handling Units									
Tag Area Served	Manufacturer	Model	Air Flow	Supply Fan	Return Fan	Min OA			
		WIDGEI	CFM	HP	HP	CFM			
RTU-1	All Floors	Haakon		45000	60	20	8500		
RTU-2	All Floors	Haakon		45000	60	20	8500		

Table 4: Air Cooled Chiller

Air Cooled Chiller									
Tag	Sonvico	Service Manufacturer	Turno	Nominal Capcity	Effici	iency			
Тад	Service Ivianc		Туре	Tons	kW/Ton	СОР			
ACC-1	RTU-1 & RTU-2	TRANE	High Efficiency	286.7	1.07		3.28		

Table 5: Pumps

	Pumps										
Тад	Service	Manufacturer	Туро	Capacity							
Tag	Service	Manufacturer	Manufacturer Type –	Flow (GPM)	Motor HP						
HWP-1	Building Heating	B&G Series 80	In-Line	180	5						
HWP-2	Building Heating	B&G Series 80	In-Line	180	5						
HWP-3	RTU-1 Heating Coil	B&G Series 60	In-Line	25	3-Jan						
HWP-4	RTU-2 Heating Coil	B&G Series 60	In-Line	25	3-Jan						
CHWP-1	Boiler Room	B&G Series 80	In-Line	445	10						
CHWP-2	Boiler Room	B&G Series 80	In-Line	400	10						
CHWP-3	Boiler Room	B&G Series 80	In-Line	400	10						

ane

Table 6: Boilers

Boilers								
Тад	Service	Manufacture	Туре	Capacity				
Tag	Service	Wanaracture	турс	MBH				
B-1	Building Heating	AERCO BMK	Condesing	1720				
B-2	Building Heating	AERCO BMK	Condesing	1720				

Table 7: Split System Air Conditioning Units

Split System Air Conditioning Units								
Tag	Service	Manufacturer	Efficiency (S)EER					
ACCU-1/ACU-1	ACU-1	Mitsubishi MUY	16					
ACCU-2/ACU-2	ACU-2	Mitsubishi MUY	16					
ACCU-3/ACU-3	ACU-2	Mitsubishi MUY	13					
ACCU-4/ACU-4	ACU-2	Mitsubishi MUY	13					
ACCU-5/ACU-5	ACU-2	Mitsubishi MUY	13					
ACCU-6/ACU-6	ACU-2	Mitsubishi MUY	13					
ACCU-7/ACU-7	ACU-7	Mitsubishi PUY	13					

Lighting

The lighting in the classrooms and offices consist of cable hung linear fluorescent direct/indirect fixtures with F32T8 lamps. The entrance lobby are recessed square fixtures with 32watt lamps. In the main floor hallway there are linear suspended pendant type fixtures. Stairwells are lit with surface wall mounted fixtures with F32T8 lamps. Mechanical rooms and general utility area lighting consist of fluorescent strip light fixtures with F32T8 lamps.

ane

Lighting is controlled through the building automation control system (BAS).

Detailed Energy Efficiency Measures

EEM 1 Lighting Upgrade

EXISTING CONDITIONS

The lighting in the general offices and classrooms is the original lighting that was installed in 2008. The lighting consists of cable hung fixtures with F32 T8 lamps.

PROPOSED MEASURE DESCRIPTION

Replace the F32 lamps with LED lamps. This measure assumes LED replacement lamps have 9.2 watt/foot per current manufacturer data. There are approximately 50 fixtures in the classrooms and 70 fixtures in the offices to be replaced.

CALCULATIONS

Energy (kWh) = Fixture Watt x No. of Fixtures x "ON" Hrs per yesar

Demand (kW) = Lighting total watt/1000 kW/watt

Hours "ON" is assumed to be 3380 hours per year.

Estimated Cost = \$100/Fixture

Hours "ON"		3380 hrs	
Existing Energy = Existing Energy Cost =	-	58677 kWh 1,854	
Proposed Energy = Proposed Energy Cost =		24944 kWh 788	
Existing Demand =		17	
Existing Demand Cost =	\$	24	
Proposed Demand =		7.4	
Proposed Demand Cost =		10	

Demand Savings =	10 kW
kWh Savings =	33732 kWh

Elec Demand Cost Savings = Elec Cost Savings =	14 1,066
Total Savings =	\$ 1,080

EEM #1 Estimated Savings				
	Baseline Electric Usage (kWh)		58677	
	Proposed Electric Usage (kWh)		24944	
	Electric Savings (kWh)		33732	
	Electric Cost Savings (\$)	\$	1,066	
Annual Energy Usage & Savings Estimate	Demand Savings (kW)		10	
	Electric Demand Savings (\$) \$		14	
	Baseline Natural Gas Usage (Therms)	-		
	Proposed Natural Gas Usage (Therms)	-		
	Natural Gas Savings (Therms)	-		
	Natural Gas Savings (\$)	-		
	Annual Energy Cost Savings	\$	1,080	
Measure Cost & Simple	Project Cost	\$	12,000	
Payback	Simple Payback (Cost/Savings)		11.1	

EEM 2 Reduce Ventilation

EXISTING CONDITIONS

The facility currently provides a constant ventilation rate. (This was established during recent concerns for health).

PROPOSED MEASURE DESCRIPTION

Provide demand control ventilation based on actual occupancy.

SAVINGS METHODOLOGY

Spreadsheet calculations were used to determine energy savings for heating and cooling systems by reducing the amount of outside air.

Calculations:

Calculations

Q = 1.08 x CFM * Δτ

Assume Ave Winter T OA is 45°F Tinside = 68° Hrs of operation = 12 hr/day ; 5 days per week ; 4 months per year (50 days)

Design Ventilation Air = 27000 CFM

Assume that ventilation can be reduced from 27,000 cfm OA to 8500 CFM OA

Hours Baseline =

1800 hrs

Heating (NG) savings Baseline Energy Energy = Reduces Energy =

1207224000 Btu 12072 Therm 380052000 3801 Therm

Assume Summer Ave T OA = 65°F T Setpoint = 60°F Same hrs

Same Design Ventilation'

Cooling Energy Baseline =76872 kWhCooling (Elec) Savings24200 kWh3414 Btu= 1kWh24200 kWh

EEM #2 Estimated Savings				
	Baseline Electric Usage (kWh)		76872	
	Proposed Electric Usage (kWh)		24200	
	Electric Savings (kWh)		52671	
Appual Energy Licego & Cavingo	Electric Cost Savings (\$)	\$	1,664	
Annual Energy Usage & Savings Estimate	Baseline Natural Gas Usage (Therms)		12072	
	Proposed Natural Gas Usage (Therms)		3801	
	Natural Gas Savings (Therms)		8272	
	Natural Gas Savings (\$)	\$	6,806	
	Annual Energy Cost Savings	\$	8,471	
	Project Cost	\$	1,000	
Measure Cost & Simple Payback	Simple Payback (Cost/Savings)		0.1	

EEM 3 Insulate Refrigerant Piping

EXISTING CONDITIONS

Existing refrigerant piping on the roof mounted condensing units is worn exposing bare refrigerant piping.

PROPOSED MEASURE DESCRIPTION

Provide new closed cell type insulation on all refrigerant piping on the roof.

SAVINGS METHODOLOGY

Methodology

The suction line in the system is assumed to be 3/8" diameter. The estimated temperature of the refrigerant is 44°F. Q(Heat Transfer) = 1/Rvalue x Surface Area x Temperature Difference Energy Use = Heat Transfer x hours

Calculations

Q(loss Btu/hr) = 1/(R Value) x Area (ft^2) x ΛΤ		
Area Piping = Circumference	e X length	C=2xpixR	
ΔT = (95-44)		A =cx l	
Units and Conversion Factor	ors	C=2xpixR	
12" = 1 ft		C =	1.1775 inches
3410 Btu/hr = 1 kW		C =	0.10 ft
		L =	100 ft
Refrigerant Pipe Diameter	= 0.375 inch	A =	9.8125 ft^2
Refrigerant Pipe Length =	100 ft		
R value Uninsu;ted =	0.25		
R value Insulated =	3		
ΔT =	51		
hours per year =	4250 hrs		
		Q1=	$1/r(uninsulated) x Area x \Delta T$
		Q1=	2001.75 Btu/hr
		Q2=	166.8125 Btu/hr
Energy 1 = 24	95 kWh		
Energy 2 = 2	08 kWh		
Energy Saved = Energy 1 - E	Energy 2		
	87 kWh		
Refrigerant Piping Cost =	\$ 1.00 perft		
Cost =	\$ 100.00		
0050-	÷ 100.00		

EEM #3 Estimated Savings				
	Electric Savings (kWh)		2287	
	Electric Cost Savings (\$)	\$	72	
	Baseline Natural Gas Usage (Therms)		0	
	Proposed Natural Gas Usage (Therms)		0	
	Natural Gas Savings (Therms)		0	
	Natural Gas Savings (\$)	\$	-	
	Annual Energy Cost Savings	\$	72	
	Project Cost	\$	100	
Measure Cost & Simple Payback	Simple Payback (Cost/Savings)		1.4	

EEM 4 Reinstate Functionality of Rainwater Harvesting System

EXISTING CONDITIONS

The existing rain harvesting system is currently non-functional.

PROPOSED MEASURE DESCRIPTION

Reinstate functionality of rain water harvesting system.

SAVINGS METHODOLOGY

Calculations

System is capable of storing 15,685 gallons of rain water to use for gray water.

				Potential
Month	Bill Amount (\$)	Consumption (gal) Cost per Gallon	Rain Harvest (gal)
Jan	641.02	29314	0.022	15685
Feb	413.18	6614	0.062	15685
Mar	883.13	57091	0.015	15685
Apr	1050.81	78183	0.013	15685
May	983.43	65714	0.015	7842.5
Jun	944.41	58495	0.016	
Jul	811.82	47312	0.017	
Aug	708.19	39017	0.018	
Sep	610.68	29278	0.021	
Oct	572.04	23552	0.024	7842.5
Nov	295.24	12156	0.024	15685
Dec	295.24	12156	0.024	15685
	8209.19			
	Total gallon per year	4588	82 gallon per year	109795 potential savings (gal)
	Total Cost per year	\$ 8,209.3	19	\$ 1,964.18 potential savings (\$)
	Ave Cost per gallon =	\$ 0.0)2	
	10 HP Pump to maintain pe	ssure in system	7.42	kW
	Assume operates 2 hr per o	lay	728	hr/year
			5401.76	kWh
			\$ 162.05	per yr to run pump
			\$ 1,802.13	Cost saving (minus cost to run pump)

EEM #4 Estimated Savings			
	Water Savings (Gal)		109795
	Water Cost Savings (\$)	\$	1,964
	Pump Energy (kWh)		5402
	Pump Eneergy Cost	\$	162
	Annual Energy Cost Savings	\$	1,802
Measure Cost & Simple	Project Cost	\$	1,500
Payback	Simple Payback (Cost/Savings)		0.8

Appendix

Appendix 1 Photos

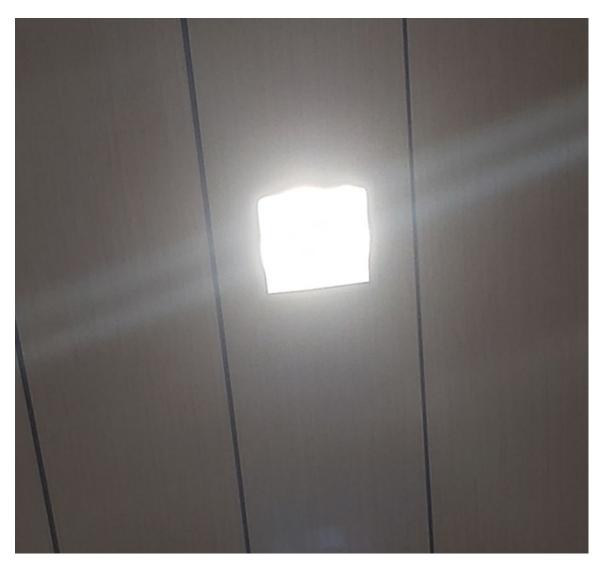


Figure A: Primary Lobby Lighting

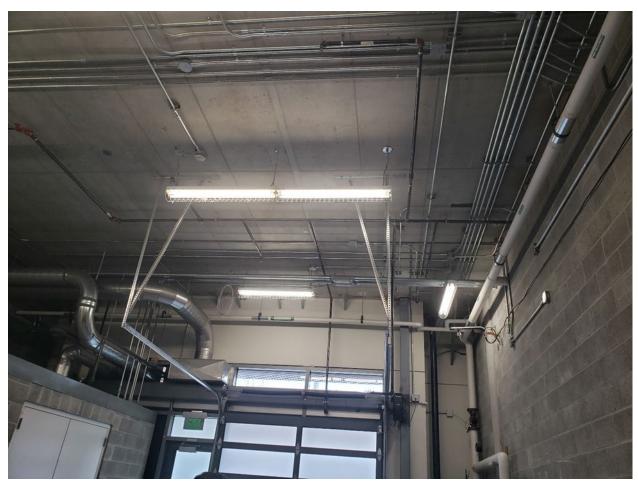


Figure B: Pendant Hung Fixtures in Corridor

Figure C: Utility Bay Fixtures

Figure D: Rain Harvesting Storage and Pumps

Figure E : Roof Mounted Air Cooled Chiller (ACC-1)

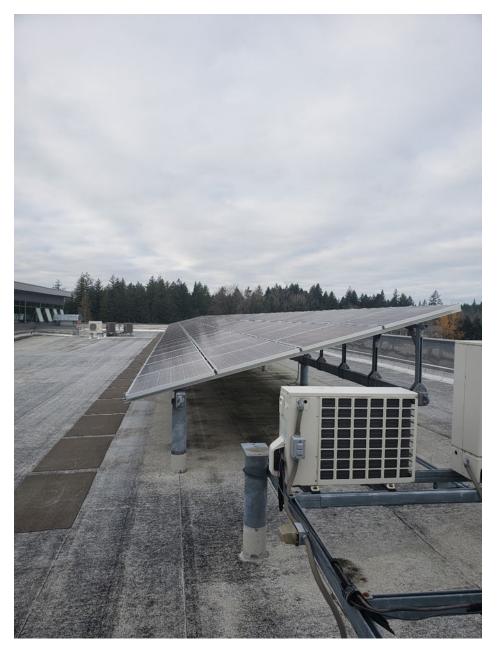


Figure F: Roof Mounted PV Solar Array

Figure G: Roof Mounted General Restroom Exhaust Fan (EF-1)

