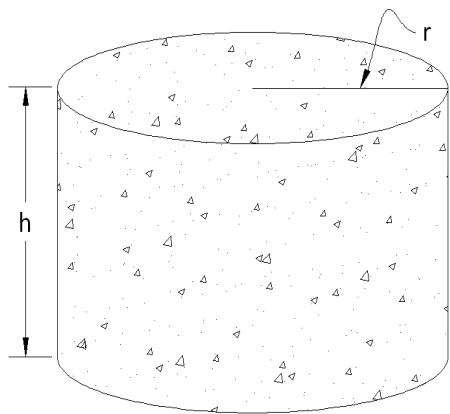


Math 085 Chapter 2 Review

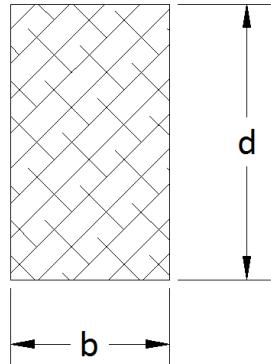

- Calculators are allowed but show your steps and **box** your final answer.
- Include the correct unit with your answer.

1. The volume of cylindrical footing (V) is $V = \pi r^2 h$.

H = height

r = radius

Find the height for a cylinder with volume = 314 in³ and radius = 6 inches. Round to one decimal place.


2. The moment of inertia (I) of a beam is $I = \frac{bd^3}{12}$.

I = moment of inertia of the beam measured in inches⁴

b = width of the beam measured in inches

d = height of the beam measured in inches

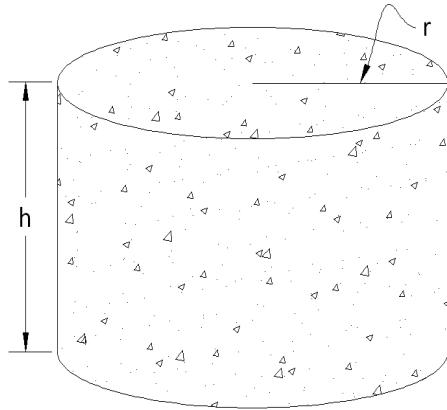
Find the width of the beam (b) if $d = 22$ in and $I = 3846$ in⁴. Round to the nearest quarter of an inch.

3. In electronics, Power (P) is $P = \frac{E^2}{R}$.

P = power measured in watts

R = resistance measured in ohms

E = voltage measured in volts


Find the voltage in a 1364 watt circuit with 12.4 ohms of resistance. Round your answer to one decimal place.

4. The volume of cylindrical footing (V) is $V = \pi r^2 h$.

H = height

r = radius

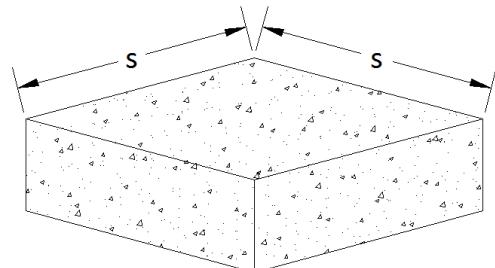
Find the radius for a cylinder with volume = 296 in³ and height = 5 inches. Round to one decimal place.

5. The formula for horsepower is $H = W \left(\frac{S}{234} \right)^3$.

H = horsepower

W = weight in pounds

S = speed in MPH

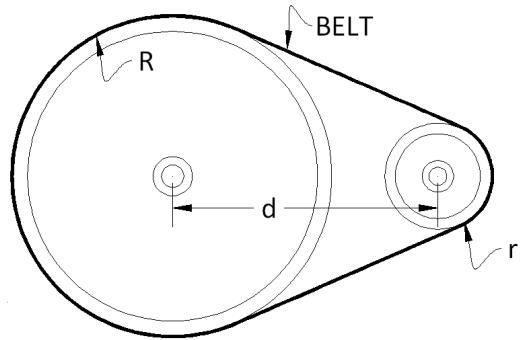

Calculate the speed for a car that weighs 2460 pounds with 440 horsepower. Round to the nearest MPH.

6. The formula to calculate size (S) of a square footing is $S = 12 \sqrt{\frac{W}{B}}$.

S = size of the footing measured in inches

W = weight on the footing measured in pounds

B = soil bearing capacity measured in pounds per square foot (PSF)


Find the bearing capacity for a footing supporting 4320 pounds if $S = 27$ inches. Round to the nearest PSF.

7. An approximation of the belt length (L) in a motor is $L = \pi(R + r) + 2d$.

R = radius of the larger pulley

r = radius of the smaller pulley

d = distance between the pulleys

Find the radius of the larger pulley if the length of the belt is 132 inches, $r = 7$ inches, and $d = 24$ inches. Round to the nearest inch.

8. The reactance offered by a capacitor in electronics is $X = \frac{1}{2\pi fC}$.

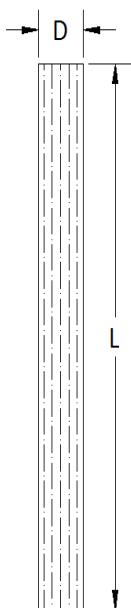
X = reactance measured in ohms

f = frequency measured in cycles per second (hertz)

C = capacitor size measured in farads

Find the frequency in a circuit with a capacitor size of .00021 farads and a reactance of 13 ohms. Round to one decimal place.

9. The allowable stress (S) on a post is $S = \frac{3ED^2}{10L^2}$.


S = allowable stress measured in pounds per square inch (PSI)

D = dimension of the post measured in inches

L = length of the post measured in inches

E = elasticity of the beam measured in pounds per square inch (PSI)

Find the length (L) for a 5.5 inch wide post with 2180 PSI of stress, if $E = 2,000,000$ psi. Round to the nearest inch.

10. In electronics, Power (P) is $P = RI^2$. Solve the electronics formula for I.

11. In electronics, Power (P) is $P = \frac{E^2}{R}$. Solve the electronics formula for R.

12. The formula to calculate size (S) of a square footing is $S = 12\sqrt{\frac{W}{B}}$. Solve the construction formula for B.

13. The reactance offered by a capacitor in electronics is $X = \frac{1}{2\pi fC}$. Solve the electronics formula for f.

14. The volume of cylindrical footing (V) is $V = \pi r^2 h$. Solve the construction formula for r.

15. The moment of inertia (I) of a beam is $I = \frac{bd^3}{12}$. Solve the construction formula for d.