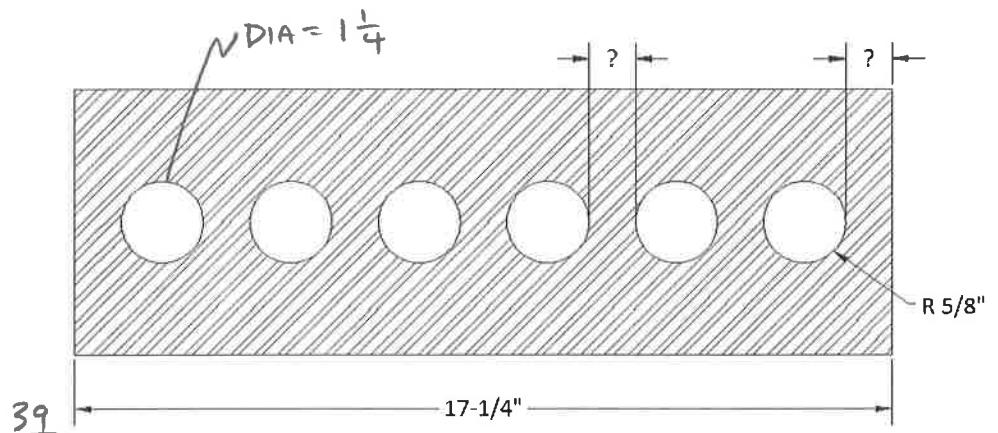


Math 63 Chapter 1 Review

Calculators are allowed but show your steps and **box** your final answer.

1. A plate is to have 6 evenly spaced holes. Calculate the gap rounded to the nearest 16^{th} of an inch.

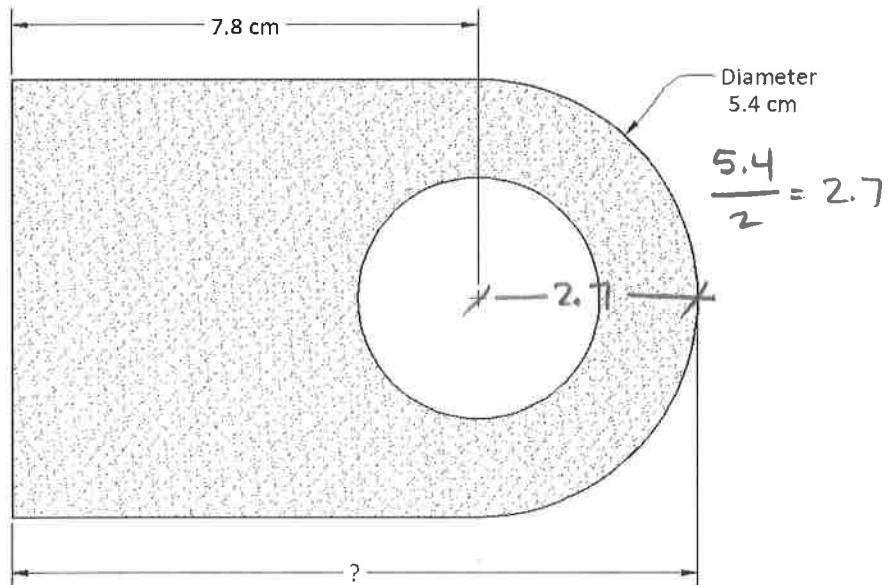

$$17\frac{1}{4} - 6(1\frac{1}{4})$$

$$17\frac{1}{4} - 7\frac{1}{2}$$

$$16\frac{5}{4} - 7\frac{3}{4} = 9\frac{3}{4}$$

$$9\frac{3}{4} \div 7 = \frac{39}{4} \times \frac{1}{7} = \frac{39}{28}$$

$$\frac{39}{28} \approx 1.39286$$



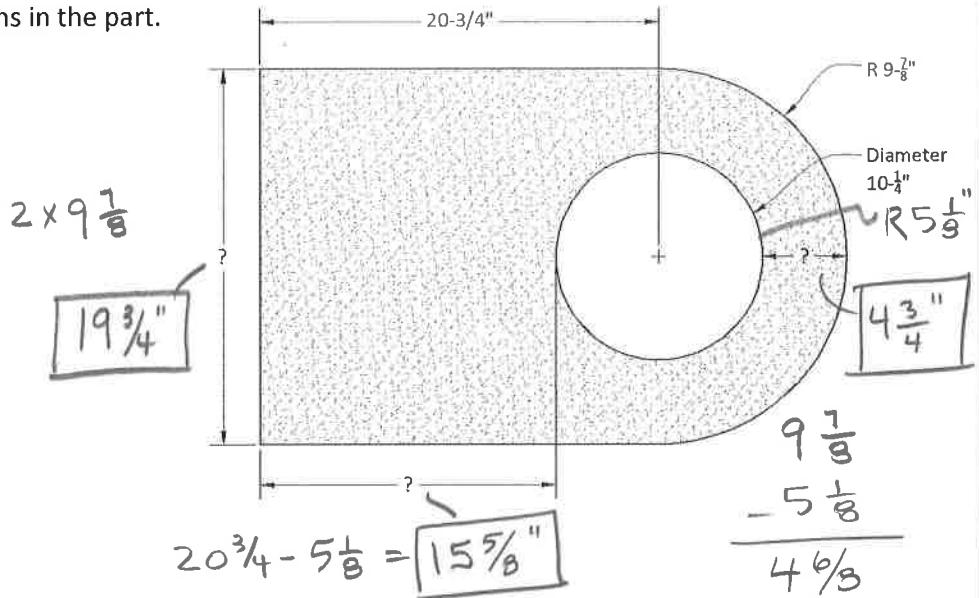
$$\cdot \frac{39286}{1} \cdot \frac{16}{16} = \frac{6.3}{16}$$

$$1\frac{3}{8}^{\text{th}}$$

2. Calculate the width of the part below.

$$\begin{array}{r} 7.8 \\ + 2.1 \\ \hline 10.5 \text{ cm} \end{array}$$

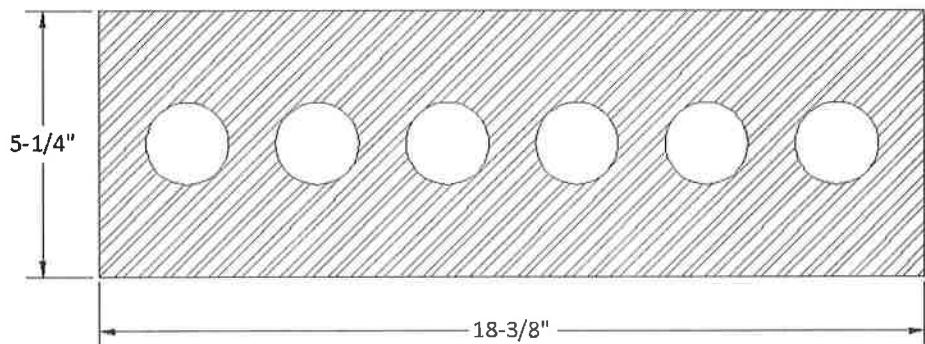
3. Calculate the dimensions of the part above if it is scaled down by 28%.


$$.28 \times 7.8 = 2.184$$

$$7.8 - 2.184 = 5.616 \text{ cm}$$

$$.28 \times 5.4 = 1.512$$

$$5.4 - 1.512 = 3.888 \text{ cm}$$

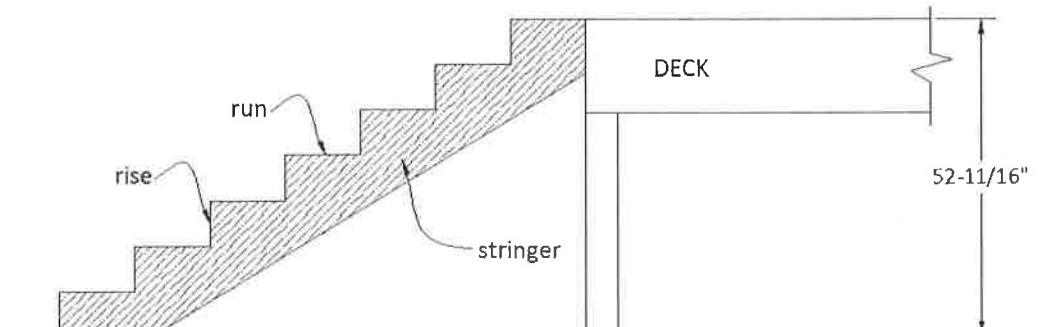

4. Calculate the 3 missing dimensions in the part.

5. Calculate the new dimensions for the part if it is scaled up by a multiple of 9.

$$5 \frac{1}{4} \times 9 = \frac{21}{4} \cdot \frac{9}{1} = \frac{189}{4}$$

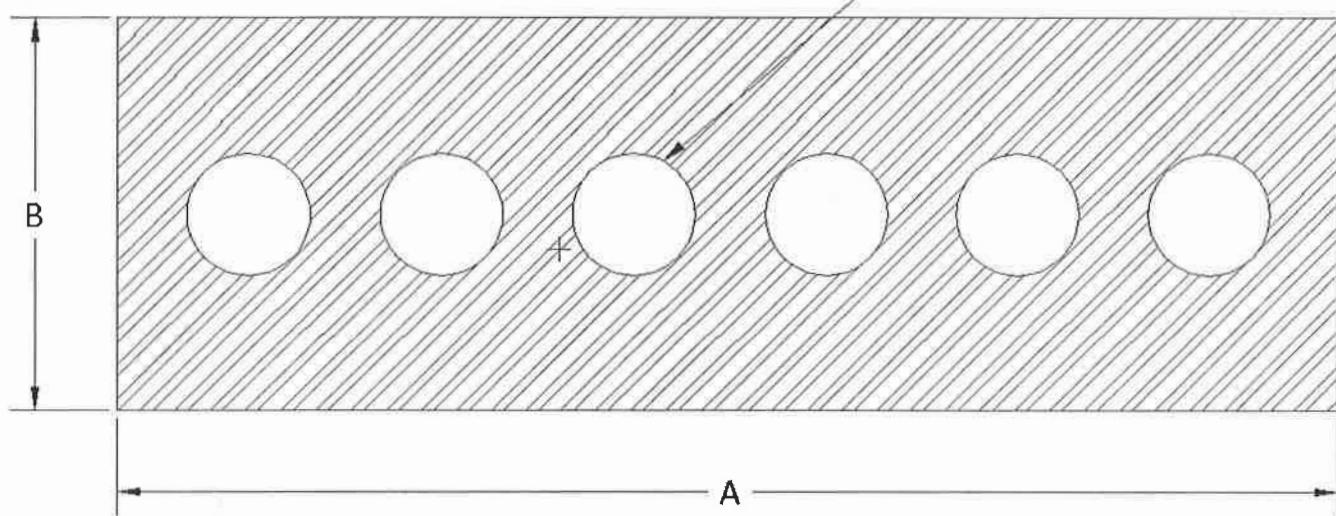
$$47 \frac{1}{4}''$$

6. Calculate the height of each rise for the stair stringer rounded to the nearest 16th of an inch. Note: all the rises must be the same size to meet building code requirements.


$$52 \frac{11}{16} \div 7$$

$$\frac{843}{16} \times \frac{1}{7} = \frac{843}{112}$$

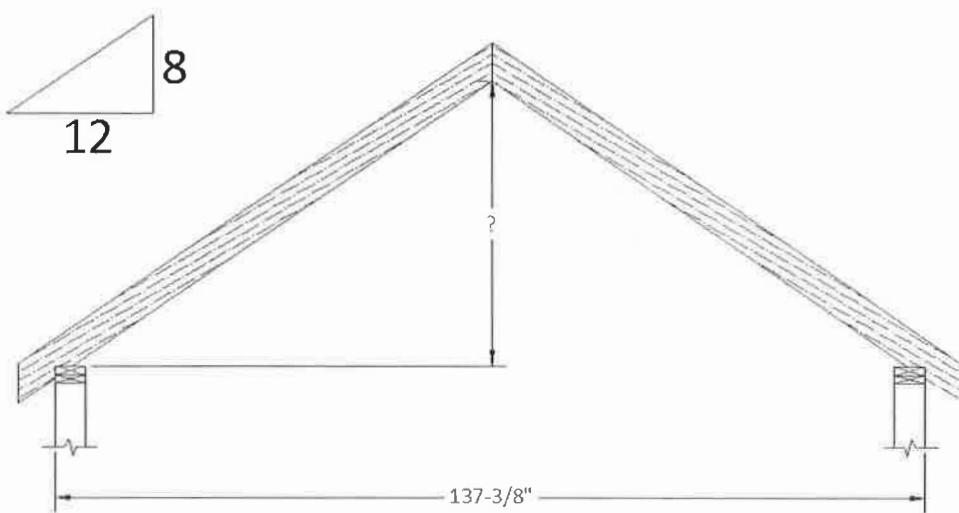
$$\approx 7.5268$$


$$\cdot \frac{5268}{1} \cdot \frac{16}{16} = \frac{84}{16}$$

$$7 \frac{1}{2}''$$

7. Measure the dimensions of the part in inches rounded to the nearest 16th and in centimeters rounded to one decimal place.

Dimension	Inches	centimeters
A	$6\frac{3}{8}''$	16.2
B	$2\frac{1}{16}''$	5.2
Diameter C	$\frac{5}{8}''$	1.6


8. Use a proportion to calculate the height (rise) of the roof rounded to the nearest 16th of an inch.

$$\frac{8}{12} = \frac{?}{68.6875}$$

$$? = 45.7917$$

$$\frac{.7917}{1} \cdot \frac{16}{16} = \frac{12.7}{16}$$

$$45\frac{13}{16}''$$

$$137\frac{3}{8} \div 2 = 68.6875$$

$$68$$

9. Convert an area of 36 square inches (in^2) to square centimeters (cm^2) rounded to 1 decimal place.

$$\frac{36 \text{ in}^2}{1} \cdot \frac{6.452 \text{ cm}^2}{1 \text{ in}^2} = \boxed{232.3 \text{ cm}^2}$$

10. A (3 in x 7 in x 43 in) bar of zinc is 903 cubic inches (in^3). Calculate its weight in kilograms if zinc weighs .253 oz/ cm^3 . Rounded to the nearest kilogram.

$$\frac{903 \text{ in}^3}{1} \cdot \frac{16.387 \text{ cm}^3}{1 \text{ in}^3} \cdot \frac{.253 \text{ oz}}{1 \text{ cm}^3} \cdot \frac{28.35 \text{ g}}{1 \text{ oz}} \cdot \frac{1 \text{ kg}}{1000 \text{ g}} = \boxed{106 \text{ kg}}$$

11. Convert a volume of 214 cubic feet (ft^3) to cubic meters (m^3) rounded to 1 decimal place.

$$\frac{214 \text{ ft}^3}{1} \cdot \frac{1728 \text{ in}^3}{1 \text{ ft}^3} \cdot \frac{16.387 \text{ cm}^3}{1 \text{ in}^3} \cdot \frac{1 \text{ m}^3}{1000000 \text{ cm}^3} = \boxed{6.1 \text{ m}^3}$$

12. The volume of cylindrical footing (V) is $V = \pi r^2 h$.

H = height and r = radius. Find the volume rounded to one decimal place, if $h = 13''$ and $r = 7''$.

$$V = \pi \cdot 7^2 \cdot 13 = 637\pi \approx \boxed{2001.2 \text{ in}^3}$$

* USING π BUTTON ON THE CALCULATOR

13. The reactance offered by a capacitor in electronics is $X = \frac{1}{2\pi fC}$.

X = reactance measured in ohms, f = frequency measured in cycles per second (hertz), C = capacitor size measured in farads. Find the reactance for a capacitor in a circuit with a frequency of 80 hertz and a capacitor size of .00054 farads, rounded to three decimal places.

$$X = \frac{1}{2\pi \cdot 80 \cdot .00054} = \frac{1}{.2714336} = \boxed{3.684 \text{ ohms}}$$

14. The formula for speed is $S = 234 \left(\frac{H}{W}\right)^{.333}$.

H = horsepower, W = weight in pounds, and S = speed in MPH. Calculate the speed for a car that weighs 1986 pounds with 685 horse power, rounded to the nearest MPH.

$$S = 234 \left(\frac{685}{1986}\right)^{.333} = 234 (.3449)^{.333} = 234 (.70155) = \boxed{164 \text{ mph}}$$

15. The voltage drop in an electrical wire is $V = \frac{2LIR}{1000}$.

V = voltage drop measured in volts, L = length of the wire measured in feet, I = current measured in amps and R = resistance in the wire measured in ohms. Use the table at the right to determine the voltage drop in a 176 foot #14 AWG electrical cord attached to a saw drawing 12 amps of current. Round to one decimal place.

$$V = \frac{2 \cdot 176 \cdot 12 \cdot 3.072}{1000} = \boxed{13.0 \text{ VOLTS}}$$

AWG	R
16	4.884
14	3.072
12	1.932
10	1.215
8	.764
6	.481
4	.302

16. The point load deflection (D) of a beam is $D = \frac{PL^3}{48EI}$.

D = deflection measured in inches, P = weight on the beam measured in pounds, L = length of the beam measured in inches, E = elasticity of the beam measured in pounds per square inch (PSI), and I = moment of inertia of the beam measured in inches⁴. Find the deflection of a beam rounded to one decimal place if $L = 312$, $P = 3650$, $E = 1,900,000$, and $I = 378$.

$$D = \frac{3650 \cdot 312}{48 \cdot 1900000 \cdot 378} = \frac{3650 \cdot 30371328}{91200000 \cdot 378} = \frac{1.108 \text{ E}^{11}}{3.447 \text{ E}^{10}}$$

$$\boxed{3.2 \text{ IN}}$$

17. The length of a rafter (R) can be calculated using the formula: $R = \frac{W}{2} \sqrt{S^2 + 1}$.

R = length of the rafter measured in inches, W = width of the building measured in inches, and S = slope of the roof. Find the length of a rafter for a building that is 286" wide and has a slope of 9/12, rounded to the nearest 16th of an inch.

$$R = \frac{286}{2} \sqrt{\left(\frac{9}{12}\right)^2 + 1} = 143 \sqrt{.5625 + 1} = 143 \sqrt{1.5625} = 143 \times 1.25 = \boxed{178 \frac{3}{4} \text{ "}}$$

18. The Exhaust Header Tubing Length (L) is $L = \frac{1900D}{d^2 R}$.

L = length measured in inches, D = displacement measured in cubic inches, d = exhaust head diameter measured in inches, and R = revolutions per minute (RPM). Find L , if $D = 320 \text{ in}^3$, $d = 4 \text{ in}$, and $R = 2600 \text{ RPM's}$, rounded to the nearest inch.

$$L = \frac{1900 \cdot 320}{4^2 \cdot 2600} = \frac{608000}{41600} \approx 14.6 = \boxed{15 \text{ IN}}$$