

Math 63 Chapter 2 Review

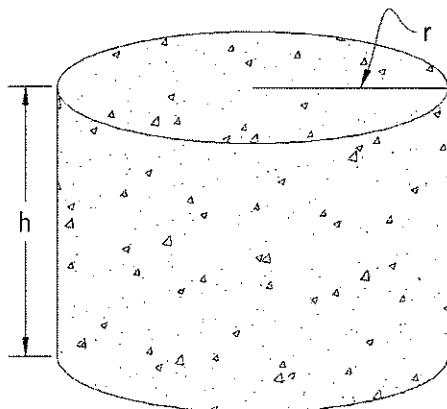
- Calculators are allowed but show your steps and **box** your final answer.
- Include the correct unit with your answer.

1. The volume of cylindrical footing (V) is $V = \pi r^2 h$.

H = height

r = radius

Find the height for a cylinder with volume = 314 in³ and radius = 6 inches. Round to one decimal place.

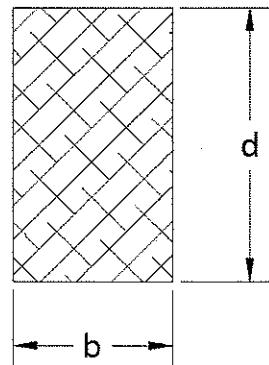

$$314 = \pi \cdot 6^2 \cdot h$$

$$314 = \pi \cdot 36 \cdot h$$

$$314 = 113.097h$$

$$h = 2.8 \text{ in}$$

$$\frac{314}{113.097} = h$$



2. The moment of inertia (I) of a beam is $I = \frac{bd^3}{12}$.

I = moment of inertia of the beam measured in inches⁴

b = width of the beam measured in inches

d = height of the beam measured in inches

Find the width of the beam (b) if $d = 22$ in and $I = 3846$ in⁴. Round to the nearest quarter of an inch.

$$3846 = \frac{b \cdot 22^3}{12}$$

$$12 \cdot 3846 = b \cdot 10648$$

$$46152 = b \cdot 10648$$

$$3846 = \frac{b \cdot 10648}{12}$$

$$\frac{46152}{10648} = b$$

$$b = 4.3 = 4\frac{1}{4} \text{ in}$$

3. In electronics, Power (P) is $P = \frac{E^2}{R}$.

P = power measured in watts

R = resistance measured in ohms

E = voltage measured in volts

Find the voltage in a 1364 watt circuit with 12.4 ohms of resistance. Round your answer to one decimal place.

$$1364 = \frac{E^2}{12.4}$$

$$12.4 \cdot 1364 = E^2$$

$$16913.6 = E^2$$

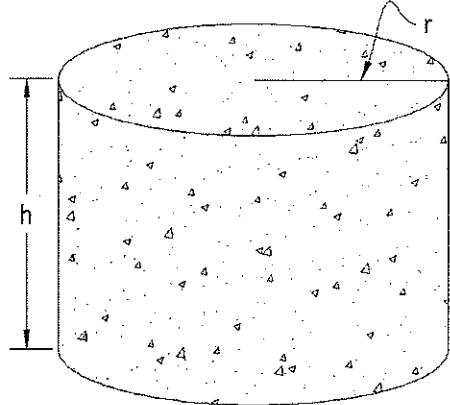
$$\sqrt{16913.6} = E$$

$$E = 130.1 \text{ VOLTS}$$

4. The volume of cylindrical footing (V) is $V = \pi r^2 h$.

H = height

r = radius


Find the radius for a cylinder with volume = 296 in³ and height = 5 inches. Round to one decimal place.

$$296 = \pi r^2 \cdot 5$$

$$\frac{296}{5\pi} = r^2$$

$$r = 4.3 \text{ in}$$

$$18.844 = r^2$$

5. The formula for horsepower is $H = W \left(\frac{S}{234}\right)^3$.

H = horsepower

W = weight in pounds

S = speed in MPH

Calculate the speed for a car that weighs 2460 pounds with 440 horsepower. Round to the nearest MPH.

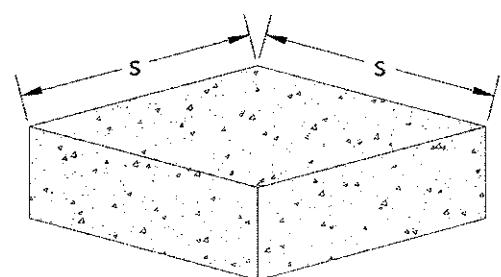
$$440 = 2460 \left(\frac{S}{234}\right)^3 \rightarrow \sqrt[3]{.1789} = \frac{S}{234}$$

$$\frac{440}{2460} = \left(\frac{S}{234}\right)^3$$

$$.1789 = \left(\frac{S}{234}\right)^3$$

$$.563 = \frac{S}{234}$$

$$234 \cdot .563 = S$$


$$S = 132 \text{ MPH}$$

6. The formula to calculate size (S) of a square footing is $S = 12 \sqrt{\frac{W}{B}}$.

S = size of the footing measured in inches

W = weight on the footing measured in pounds

B = soil bearing capacity measured in pounds per square foot (PSF)

Find the bearing capacity for a footing supporting 4320 pounds if $S = 27$ inches. Round to the nearest PSF.

$$27 = 12 \sqrt{\frac{4320}{B}}$$

$$\frac{27}{12} = \sqrt{\frac{4320}{B}}$$

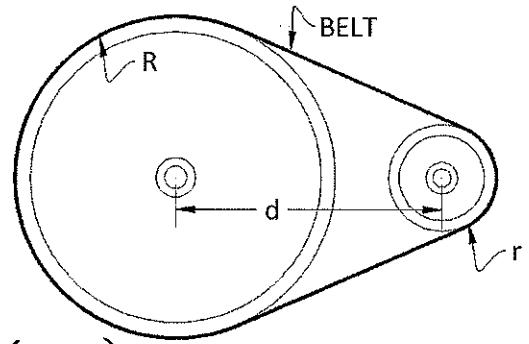
$$2.25 = \sqrt{\frac{4320}{B}}$$

$$2.25^2 = \frac{4320}{B}$$

$$5.0625 = \frac{4320}{B}$$

$$5.0625 B = 4320$$

$$B = \frac{4320}{5.0625}$$


$$B = 853 \text{ PSF}$$

7. An approximation of the belt length (L) in a motor is $L = \pi(R + r) + 2d$.

R = radius of the larger pulley

r = radius of the smaller pulley

d = distance between the pulleys

Find the radius of the larger pulley if the length of the belt is 132 inches, $r = 7$ inches, and $d = 24$ inches. Round to the nearest inch.

$$132 = \pi(R + 7) + 2(24)$$

$$132 = \pi(R + 7) + 48$$

$$-48$$

$$\frac{84}{\pi} = \frac{\pi(R + 7)}{\pi}$$

$$26.738 = R + 7$$

$$-7 \quad -7$$

$$R \approx 19.7 \text{ in}$$

$$R = 20 \text{ in}$$

8. The reactance offered by a capacitor in electronics is $X = \frac{1}{2\pi f C}$.

X = reactance measured in ohms

f = frequency measured in cycles per second (hertz)

C = capacitor size measured in farads

Find the frequency in a circuit with a capacitor size of .00021 farads and a reactance of 13 ohms. Round to one decimal place.

$$f \cdot 13 = \frac{1}{2\pi f \cdot 0.00021} \cdot f$$

$$\frac{13f}{13} = \frac{1}{2\pi \cdot 0.00021} \div 13$$

$$f = \frac{1}{2\pi \cdot 0.00021 \cdot 13}$$

$$f \approx 58.298$$

$$f = 58.3 \text{ Hertz}$$

9. The allowable stress (S) on a post is $S = \frac{3ED^2}{10L^2}$.

S = allowable stress measured in pounds per square inch (PSI)

D = dimension of the post measured in inches

L = length of the post measured in inches

E = elasticity of the beam measured in pounds per square inch (PSI)

Find the length (L) for a 5.5 inch wide post with 2180 PSI of stress, if E = 2,000,000 psi. Round to the nearest inch.

$$2180 = \frac{3 \cdot 2000000 \cdot 5.5^2}{10L^2} \cdot L^2$$

$$L^2 = \frac{3 \cdot 2000000 \cdot 5.5^2}{10 \cdot 2180}$$

$$L^2 \approx 8325.69$$

$$L \approx \sqrt{8325.69} \approx 91.2$$

$$L = 91 \text{ in}$$

$$\frac{2180}{2180} = \frac{3 \cdot 2000000 \cdot 5.5^2}{10} \div 2180$$

10. In electronics, Power (P) is $P = RI^2$. Solve the electronics formula for I.

$$P = RI^2$$

$$\frac{P}{R} = I^2$$

$$I = \sqrt{\frac{P}{R}}$$

11. In electronics, Power (P) is $P = \frac{E^2}{R}$. Solve the electronics formula for R.

$$P = \frac{E^2}{R}$$

$$PR = E^2$$

$$R = \frac{E^2}{P}$$

12. The formula to calculate size (S) of a square footing is $S = 12\sqrt{\frac{W}{B}}$. Solve the construction formula for B.

$$S = 12\sqrt{\frac{W}{B}}$$

$$\frac{S}{12} = \sqrt{\frac{W}{B}}$$

$$\left(\frac{S}{12}\right)^2 = \frac{W}{B}$$

$$B \left(\frac{S}{12}\right)^2 = W$$

$$B = \frac{W}{\left(\frac{S}{12}\right)^2}$$

$$B = \frac{144W}{S^2}$$

GOOD

BETTER

13. The reactance offered by a capacitor in electronics is $X = \frac{1}{2\pi fC}$. Solve the electronics formula for f.

$$X = \frac{1}{2\pi fC}$$

$$fX = \frac{1}{2\pi C}$$

$$f = \frac{1}{2\pi CX}$$

14. The volume of cylindrical footing (V) is $V = \pi r^2 h$. Solve the construction formula for r.

$$V = \pi r^2 h$$

$$\frac{V}{\pi h} = r^2$$

$$r = \sqrt{\frac{V}{\pi h}}$$

15. The moment of inertia (I) of a beam is $I = \frac{bd^3}{12}$. Solve the construction formula for d.

$$I = \frac{bd^3}{12}$$

$$12I = bd^3$$

$$d = \sqrt[3]{\frac{12I}{b}}$$

$$d = \left(\frac{12I}{b}\right)^{\frac{1}{3}}$$